{"title":"Explainable AI-Guided Neural Architecture Search for Adversarial Robustness in Approximate DNNs","authors":"Ayesha Siddique;Khaza Anuarul Hoque","doi":"10.1109/TSUSC.2025.3561603","DOIUrl":null,"url":null,"abstract":"Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 5","pages":"949-964"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10966055/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.