Francesco Di Meo, Francesca Albano, Annamaria Cesarano, Yunfei Wang, Brandon Kale, Kenneth Shain, Ariosto Silva, Noriyoshi Kurihara, Hirofumi Tenshin, David Jellyman, Xiaofei Song, Sasan Ghaffari, Hector Mesa, Ben Creelan, Ciara Freeman, Xiaohong Zhao, Mark B. Meads, Paulo C. Rodriguez, Silvia Marino, Frederick Locke, Fabiana Perna
{"title":"Developing SEMA4A-directed CAR T cells to overcome low BCMA antigen density in multiple myeloma","authors":"Francesco Di Meo, Francesca Albano, Annamaria Cesarano, Yunfei Wang, Brandon Kale, Kenneth Shain, Ariosto Silva, Noriyoshi Kurihara, Hirofumi Tenshin, David Jellyman, Xiaofei Song, Sasan Ghaffari, Hector Mesa, Ben Creelan, Ciara Freeman, Xiaohong Zhao, Mark B. Meads, Paulo C. Rodriguez, Silvia Marino, Frederick Locke, Fabiana Perna","doi":"10.1016/j.ccell.2025.09.007","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) for multiple myeloma (MM) is effective, but relapses associated with low-to-negative BCMA expression are common, indicating the need for additional targets. We quantitatively profile antigen density in a cohort of patients relapsed after BCMA CAR T therapy, showing high number of SEMA4A molecules/cell where BCMA density is low. SEMA4A deletion limits MM cell growth, migration, tissue infiltration, and osteoclast formation, while extending mouse survival. We generate monoclonal antibodies targeting SEMA4A-extracellular domain for CAR construction, screen engineered T cells for expansion, cytokine release, and cytotoxicity against MM cells. Lead constructs lack reactivity against normal non-hematopoietic tissues. SEMA4A CAR T cells show superior efficacy than BCMA CAR T cells eliminating patient-derived BCMA<sup>low</sup> tumors and MM cells progressing under suboptimal doses of BCMA CAR T cells. This study prepares for a phase 1 clinical trial with SEMA4A-directed CAR T cells for MM.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"24 1","pages":""},"PeriodicalIF":44.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.09.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) for multiple myeloma (MM) is effective, but relapses associated with low-to-negative BCMA expression are common, indicating the need for additional targets. We quantitatively profile antigen density in a cohort of patients relapsed after BCMA CAR T therapy, showing high number of SEMA4A molecules/cell where BCMA density is low. SEMA4A deletion limits MM cell growth, migration, tissue infiltration, and osteoclast formation, while extending mouse survival. We generate monoclonal antibodies targeting SEMA4A-extracellular domain for CAR construction, screen engineered T cells for expansion, cytokine release, and cytotoxicity against MM cells. Lead constructs lack reactivity against normal non-hematopoietic tissues. SEMA4A CAR T cells show superior efficacy than BCMA CAR T cells eliminating patient-derived BCMAlow tumors and MM cells progressing under suboptimal doses of BCMA CAR T cells. This study prepares for a phase 1 clinical trial with SEMA4A-directed CAR T cells for MM.
靶向B细胞成熟抗原(BCMA)的嵌合抗原受体(CAR) T细胞治疗多发性骨髓瘤(MM)是有效的,但与BCMA低至阴性表达相关的复发是常见的,这表明需要额外的靶点。我们定量分析了一组BCMA CAR - T治疗后复发患者的抗原密度,显示在BCMA密度低的地方,SEMA4A分子/细胞数量高。SEMA4A缺失限制了MM细胞的生长、迁移、组织浸润和破骨细胞的形成,同时延长了小鼠的存活时间。我们产生靶向sema4a细胞外结构域的单克隆抗体,用于CAR构建,筛选工程T细胞的扩增,细胞因子释放和对MM细胞的细胞毒性。铅构建体对正常非造血组织缺乏反应性。SEMA4A CAR - T细胞在次优剂量的BCMA CAR - T细胞下,对患者源性BCMAlow肿瘤和MM细胞的清除效果优于BCMA CAR - T细胞。该研究准备用sema4a靶向CAR - T细胞治疗MM的1期临床试验。
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.