In Situ Synthesis of MoS2-GO Catalyst and Unveiling Its Potential for Deep Hydrogenation Desulfurization

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Xianglong Meng, Hailing Guo, Kun Sun, Xuyu Zhao, Girolamo Giordano, Yongming Chai, Chenguang Liu
{"title":"In Situ Synthesis of MoS2-GO Catalyst and Unveiling Its Potential for Deep Hydrogenation Desulfurization","authors":"Xianglong Meng, Hailing Guo, Kun Sun, Xuyu Zhao, Girolamo Giordano, Yongming Chai, Chenguang Liu","doi":"10.1039/d5qi01825k","DOIUrl":null,"url":null,"abstract":"MoS2 catalyst shows great potential in deep hydrodesulfurization (HDS) but is limited by high metal usage and low active site utilization. A MoS2-GO composite catalyst with trace amounts of graphene oxide (GO) was synthesized via an in situ solvothermal method. Owing to its high polarity, deionized water acts as an effective dispersant for GO, ensuring uniform dispersion while preserving its sheet-like morphology. The Mo precursor, bearing organic functional groups, is homogeneously anchored onto the oxygen functionalities of GO sheets, resulting in a densely packed monolayer MoS2 structure with abundant, highly exposed HDS edge sites across the layered GO surface. Combined X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analyses reveal that MoS2 forms a heterostructure with GO through interactions between S atoms and the surface oxygen functionalities of GO. In the HDS reaction, it achieves 98.3% Dibenzothiophene (DBT) conversion at 280 °C and exhibits high hydrogenation desulfurization (HYD) selectivity (S(HYD/DDS) up to 12.8). Notably, it demonstrates excellent activity for sterically hindered 4,6-dimethyldibenzothiophene (4,6-DMDBT, 80.7% conversion at 300 °C) and a high HYD pathway selectivity (S(HYD/DDS) up to 13.9). Raman spectroscopy coupled with DFT calculations reveals that the MoS2-GO catalyst features extensive Mo-S-O(GO) electron-transport networks, which facilitate H2 dissociation and drive continuous hydrodesulfurization of sulfur-containing species. This provides insights for the preparation of heavy oil hydrocracking catalysts and the regulation of hydrogenation pathway selectivity.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"14 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01825k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

MoS2 catalyst shows great potential in deep hydrodesulfurization (HDS) but is limited by high metal usage and low active site utilization. A MoS2-GO composite catalyst with trace amounts of graphene oxide (GO) was synthesized via an in situ solvothermal method. Owing to its high polarity, deionized water acts as an effective dispersant for GO, ensuring uniform dispersion while preserving its sheet-like morphology. The Mo precursor, bearing organic functional groups, is homogeneously anchored onto the oxygen functionalities of GO sheets, resulting in a densely packed monolayer MoS2 structure with abundant, highly exposed HDS edge sites across the layered GO surface. Combined X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analyses reveal that MoS2 forms a heterostructure with GO through interactions between S atoms and the surface oxygen functionalities of GO. In the HDS reaction, it achieves 98.3% Dibenzothiophene (DBT) conversion at 280 °C and exhibits high hydrogenation desulfurization (HYD) selectivity (S(HYD/DDS) up to 12.8). Notably, it demonstrates excellent activity for sterically hindered 4,6-dimethyldibenzothiophene (4,6-DMDBT, 80.7% conversion at 300 °C) and a high HYD pathway selectivity (S(HYD/DDS) up to 13.9). Raman spectroscopy coupled with DFT calculations reveals that the MoS2-GO catalyst features extensive Mo-S-O(GO) electron-transport networks, which facilitate H2 dissociation and drive continuous hydrodesulfurization of sulfur-containing species. This provides insights for the preparation of heavy oil hydrocracking catalysts and the regulation of hydrogenation pathway selectivity.
MoS2-GO催化剂的原位合成及其深度加氢脱硫潜力的揭示
二硫化钼催化剂在深度加氢脱硫(HDS)中具有很大的应用潜力,但受限于金属用量大、活性位点利用率低。采用原位溶剂热法合成了含有微量氧化石墨烯(GO)的MoS2-GO复合催化剂。由于其高极性,去离子水作为氧化石墨烯的有效分散剂,在保持其片状形态的同时确保均匀分散。含有有机官能团的Mo前驱体均匀地锚定在氧化石墨烯片的氧官能团上,从而形成致密的单层二硫化钼结构,在层状氧化石墨烯表面具有丰富的高暴露的HDS边缘位点。结合x射线光电子能谱(XPS)和密度泛函理论(DFT)分析表明,MoS2通过S原子与氧化石墨烯表面氧官能团的相互作用与氧化石墨烯形成异质结构。在280℃的HDS反应中,二苯并噻吩(DBT)的转化率达到98.3%,并表现出较高的加氢脱硫(HYD)选择性(S(HYD/DDS)高达12.8)。值得注意的是,它对位阻4,6-二甲基二苯并噻吩具有良好的活性(4,6- dmdbt, 300°C时转化率为80.7%)和高HYD途径选择性(S(HYD/DDS)高达13.9)。Raman光谱和DFT计算表明,MoS2-GO催化剂具有广泛的Mo-S-O(GO)电子传递网络,促进H2解离并驱动含硫物质的连续加氢脱硫。这为重油加氢裂化催化剂的制备和加氢途径选择性的调控提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信