Atomic Coordination Editing Achieves Ultraproductive Single-Atom Catalysts with Ultralow Loadings.

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liru Cao,Fenfei Wei,Yang Chen,Xiaoli Pan,Hongchen Cao,Yang Su,Yang Zhao,Dali Chen,Yicong Chai,Lulu Chen,Jian Lin,Sen Lin,Xiaodong Wang,Xianzhi Fu,Tao Zhang
{"title":"Atomic Coordination Editing Achieves Ultraproductive Single-Atom Catalysts with Ultralow Loadings.","authors":"Liru Cao,Fenfei Wei,Yang Chen,Xiaoli Pan,Hongchen Cao,Yang Su,Yang Zhao,Dali Chen,Yicong Chai,Lulu Chen,Jian Lin,Sen Lin,Xiaodong Wang,Xianzhi Fu,Tao Zhang","doi":"10.1021/jacs.5c14188","DOIUrl":null,"url":null,"abstract":"Fabrication of noble-metal-based catalysts combining ultralow loadings with industrial-grade performance remains a grand challenge. Here, we report a facile strategy to synthesize ppm-level loaded Ir1 single-atom catalysts (SACs) that can break scaling-relation limitations, achieving exceptional propane dehydrogenation (PDH) performance. Simple H2IrCl6 impregnation on carbon followed by NH3 pyrolysis yields a catalyst that achieves ∼33% propane conversion and ∼92% propylene selectivity. It demonstrates a remarkable propylene time-space yield of 14976 molC3H6 molIr-1 h-1 with an ultralow deactivation constant (0.00191 h-1), outperforming Ir nanoparticles and most reported noble-metal catalysts. Advanced characterizations and density functional theory calculations disclose that NH3 pyrolysis induces in situ substitution of Cl by N species to generate an Ir-O2N2 active motif, where dual N/O coordination simultaneously drives the PDH reaction and prevents metal aggregation. This approach provides a blueprint for developing industrial-viable SACs that reconcile atom-economy with process-intensity demands, as validated across multiple noble-metal systems.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"114 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c14188","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fabrication of noble-metal-based catalysts combining ultralow loadings with industrial-grade performance remains a grand challenge. Here, we report a facile strategy to synthesize ppm-level loaded Ir1 single-atom catalysts (SACs) that can break scaling-relation limitations, achieving exceptional propane dehydrogenation (PDH) performance. Simple H2IrCl6 impregnation on carbon followed by NH3 pyrolysis yields a catalyst that achieves ∼33% propane conversion and ∼92% propylene selectivity. It demonstrates a remarkable propylene time-space yield of 14976 molC3H6 molIr-1 h-1 with an ultralow deactivation constant (0.00191 h-1), outperforming Ir nanoparticles and most reported noble-metal catalysts. Advanced characterizations and density functional theory calculations disclose that NH3 pyrolysis induces in situ substitution of Cl by N species to generate an Ir-O2N2 active motif, where dual N/O coordination simultaneously drives the PDH reaction and prevents metal aggregation. This approach provides a blueprint for developing industrial-viable SACs that reconcile atom-economy with process-intensity demands, as validated across multiple noble-metal systems.
原子配位编辑实现超低负载的超多产单原子催化剂。
制造超低负载与工业级性能相结合的贵金属基催化剂仍然是一个巨大的挑战。在这里,我们报告了一种简单的策略来合成ppm级负载Ir1单原子催化剂(SACs),它可以打破尺度关系的限制,实现卓越的丙烷脱氢(PDH)性能。简单的H2IrCl6浸渍在碳上,然后进行NH3热解,得到的催化剂丙烷转化率为~ 33%,丙烯选择性为~ 92%。其丙烯的时空产率为14976 molC3H6 molIr-1 h-1,失活常数极低(0.00191 h-1),优于Ir纳米颗粒和大多数已报道的贵金属催化剂。先进的表征和密度泛函数理论计算表明,NH3热解诱导Cl被N种原位取代,生成Ir-O2N2活性基序,其中双N/O配位同时驱动PDH反应并阻止金属聚集。这种方法为开发工业上可行的sac提供了蓝图,这些sac能够协调原子经济性和过程强度需求,并在多个贵金属系统中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信