{"title":"Sensitivity of ODE Solutions and Quantities of Interest with Respect to Component Functions in the Dynamics","authors":"Jonathan R. Cangelosi, Matthias Heinkenschloss","doi":"10.1137/25m1729563","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2094-2118, October 2025. <br/> Abstract. This work analyzes the sensitivities of the solution of a system of ordinary differential equations (ODEs) and a corresponding quantity of interest (QoI) to perturbations in a state-dependent component function that appears in the governing ODEs. This extends existing ODE sensitivity results, which consider the sensitivity of the ODE solution with respect to state-independent parameters. It is shown that with Carathéodory-type assumptions on the ODEs, the implicit function theorem can be applied to establish continuous Fréchet differentiability of the ODE solution with respect to the component function. These sensitivities are used to develop new estimates for the change in the ODE solution or QoI when the component function is perturbed. In applications, this new sensitivity-based bound on the ODE solution or QoI error is often much tighter than classical Gronwall-type error bounds. The sensitivity-based error bounds are applied to a trajectory simulation for a hypersonic vehicle.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/25m1729563","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2094-2118, October 2025. Abstract. This work analyzes the sensitivities of the solution of a system of ordinary differential equations (ODEs) and a corresponding quantity of interest (QoI) to perturbations in a state-dependent component function that appears in the governing ODEs. This extends existing ODE sensitivity results, which consider the sensitivity of the ODE solution with respect to state-independent parameters. It is shown that with Carathéodory-type assumptions on the ODEs, the implicit function theorem can be applied to establish continuous Fréchet differentiability of the ODE solution with respect to the component function. These sensitivities are used to develop new estimates for the change in the ODE solution or QoI when the component function is perturbed. In applications, this new sensitivity-based bound on the ODE solution or QoI error is often much tighter than classical Gronwall-type error bounds. The sensitivity-based error bounds are applied to a trajectory simulation for a hypersonic vehicle.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.