HKANLP: Link Prediction With Hyperspherical Embeddings and Kolmogorov-Arnold Networks.

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenchuan Zhang,Wentao Fan,Weifeng Su,Nizar Bouguila
{"title":"HKANLP: Link Prediction With Hyperspherical Embeddings and Kolmogorov-Arnold Networks.","authors":"Wenchuan Zhang,Wentao Fan,Weifeng Su,Nizar Bouguila","doi":"10.1109/tnnls.2025.3614341","DOIUrl":null,"url":null,"abstract":"Link prediction (LP) is fundamental to graph-based applications, yet existing graph autoencoders (GAEs) and variational GAEs (VGAEs) often struggle with intrinsic graph properties, particularly the presence of negative eigenvalues in adjacency matrices, which limits their adaptability and predictive performance. To address this limitation, we propose Hyperspherical Kolmogorov-Arnold Networks for LP (HKANLP), a novel framework that combines multiple graph neural network (GNN)-based representation learning strategies with Kolmogorov-Arnold networks (KANs) in a hyperspherical embedding space. Specifically, our model leverages the von Mises-Fisher (vMF) distribution to impose geometric consistency in the latent space and employs KANs as universal function approximators to reconstruct adjacency matrices, thereby mitigating the impact of negative eigenvalues and enhancing spectral diversity. Extensive experiments on homophilous, heterophilous, and large-scale graph datasets demonstrate that HKANLP achieves superior LP performance and robustness compared to state-of-the-art baselines. Furthermore, visualization analyses illustrate the model's effectiveness in capturing complex structural patterns. The source code of our model is publicly available at https://github.com/zxj8806/HKANLP/.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"53 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tnnls.2025.3614341","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Link prediction (LP) is fundamental to graph-based applications, yet existing graph autoencoders (GAEs) and variational GAEs (VGAEs) often struggle with intrinsic graph properties, particularly the presence of negative eigenvalues in adjacency matrices, which limits their adaptability and predictive performance. To address this limitation, we propose Hyperspherical Kolmogorov-Arnold Networks for LP (HKANLP), a novel framework that combines multiple graph neural network (GNN)-based representation learning strategies with Kolmogorov-Arnold networks (KANs) in a hyperspherical embedding space. Specifically, our model leverages the von Mises-Fisher (vMF) distribution to impose geometric consistency in the latent space and employs KANs as universal function approximators to reconstruct adjacency matrices, thereby mitigating the impact of negative eigenvalues and enhancing spectral diversity. Extensive experiments on homophilous, heterophilous, and large-scale graph datasets demonstrate that HKANLP achieves superior LP performance and robustness compared to state-of-the-art baselines. Furthermore, visualization analyses illustrate the model's effectiveness in capturing complex structural patterns. The source code of our model is publicly available at https://github.com/zxj8806/HKANLP/.
超球面嵌入与Kolmogorov-Arnold网络的链接预测。
链接预测(LP)是基于图的应用的基础,然而现有的图自编码器(GAEs)和变分自编码器(VGAEs)经常与固有的图属性作努力,特别是在邻接矩阵中存在负特征值,这限制了它们的适应性和预测性能。为了解决这一限制,我们提出了用于LP的超球面Kolmogorov-Arnold网络(HKANLP),这是一个将基于多图神经网络(GNN)的表示学习策略与超球面嵌入空间中的Kolmogorov-Arnold网络(KANs)相结合的新框架。具体而言,我们的模型利用von Mises-Fisher (vMF)分布在潜在空间中施加几何一致性,并使用KANs作为通用函数近似器来重建邻接矩阵,从而减轻负特征值的影响并增强谱多样性。在同质、异质和大规模图数据集上的大量实验表明,与最先进的基线相比,HKANLP具有优越的LP性能和鲁棒性。此外,可视化分析说明了该模型在捕获复杂结构模式方面的有效性。我们的模型的源代码可以在https://github.com/zxj8806/HKANLP/上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信