DECTGoutSys: Reducing False Positive Gout Diagnoses via a Machine Vision Pipeline for Crystal Tophi Identification+Classification in Dual-Energy Computed Tomography (DECT).

Riel Castro-Zunti, Yunjung Choi, Younhee Choi, Hee Suk Chae, Gong Yong Jin, Eun Hae Park, Seok-Bum Ko
{"title":"DECTGoutSys: Reducing False Positive Gout Diagnoses via a Machine Vision Pipeline for Crystal Tophi Identification+Classification in Dual-Energy Computed Tomography (DECT).","authors":"Riel Castro-Zunti, Yunjung Choi, Younhee Choi, Hee Suk Chae, Gong Yong Jin, Eun Hae Park, Seok-Bum Ko","doi":"10.1007/s10278-025-01703-3","DOIUrl":null,"url":null,"abstract":"<p><p>Gout is the world's foremost chronic inflammatory arthritis. Dual-energy computed tomography (DECT) images tophi-monosodium urate (MSU) crystal deposits that indicate gout-as an easily recognizable green color, facilitating high sensitivity. However, tophi-like regions (\"artifacts\") may be found in healthy controls, degrading specificity. To mitigate false positives, we propose the first automated system to localize MSU-presenting crystal deposits from DECT and classify them as gouty tophi or artifacts. Our solution, developed using 47 gout and 27 control patient scans, is three-stage. First, a computer vision algorithm crops green regions of interest (RoIs) from a patient's DECT scan frames and filters obvious false positives. Next, extracted RoIs are classified as tophi or artifact via one of three fine-tuned deep learning models; one model is trained to predict \"small\" RoIs, another \"medium,\" and the third predicts \"large\" RoIs. Size thresholds are based on pixel area quartile statistics. Patient-level gout versus control classification is made via a machine learning system trained using a suite of features calculated from the outcomes of the RoI classifiers. Using 6-fold cross-validation, the proposed pipeline achieved a patient-level diagnostic accuracy, sensitivity, and specificity of 91.89%, 87.23%, and 100.00%. Using confidence values derived from the majority vote of RoI predictions, the best area under the receiver operator characteristics curve (ROC AUC) is 97.16%. The best RoI-level classifiers achieved mean tophus versus artifact accuracy, sensitivity, specificity, and ROC AUC of 89.61%, 85.42%, 93.70%, and 92.72%. Results demonstrate that machine/deep learning facilitates high-specificity gout diagnoses while maintaining respectable sensitivity.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01703-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gout is the world's foremost chronic inflammatory arthritis. Dual-energy computed tomography (DECT) images tophi-monosodium urate (MSU) crystal deposits that indicate gout-as an easily recognizable green color, facilitating high sensitivity. However, tophi-like regions ("artifacts") may be found in healthy controls, degrading specificity. To mitigate false positives, we propose the first automated system to localize MSU-presenting crystal deposits from DECT and classify them as gouty tophi or artifacts. Our solution, developed using 47 gout and 27 control patient scans, is three-stage. First, a computer vision algorithm crops green regions of interest (RoIs) from a patient's DECT scan frames and filters obvious false positives. Next, extracted RoIs are classified as tophi or artifact via one of three fine-tuned deep learning models; one model is trained to predict "small" RoIs, another "medium," and the third predicts "large" RoIs. Size thresholds are based on pixel area quartile statistics. Patient-level gout versus control classification is made via a machine learning system trained using a suite of features calculated from the outcomes of the RoI classifiers. Using 6-fold cross-validation, the proposed pipeline achieved a patient-level diagnostic accuracy, sensitivity, and specificity of 91.89%, 87.23%, and 100.00%. Using confidence values derived from the majority vote of RoI predictions, the best area under the receiver operator characteristics curve (ROC AUC) is 97.16%. The best RoI-level classifiers achieved mean tophus versus artifact accuracy, sensitivity, specificity, and ROC AUC of 89.61%, 85.42%, 93.70%, and 92.72%. Results demonstrate that machine/deep learning facilitates high-specificity gout diagnoses while maintaining respectable sensitivity.

DECTGoutSys:通过双能计算机断层扫描(DECT)中晶体Tophi识别和分类的机器视觉管道减少假阳性痛风诊断。
痛风是世界上最重要的慢性炎症性关节炎。双能计算机断层扫描(DECT)图像显示痛风的痛风石-尿酸钠(MSU)晶体沉积-作为一种容易识别的绿色,促进高灵敏度。然而,在健康对照中可能发现嗜酸钙样区域(“伪影”),降低了特异性。为了减少误报,我们提出了第一个自动化系统来定位来自DECT的msu晶体沉积物,并将其分类为痛风石或人工制品。我们的解决方案采用了47个痛风患者和27个对照患者的扫描结果,分为三个阶段。首先,计算机视觉算法从患者的DECT扫描帧中剔除感兴趣的绿色区域(roi),并过滤明显的假阳性。接下来,通过三种微调的深度学习模型之一,将提取的roi分类为tophi或artifact;一个模型被训练来预测“小”的roi,另一个模型被训练来预测“中等”的roi,第三个模型被训练来预测“大”的roi。大小阈值基于像素面积四分位数统计。患者级痛风与对照组的分类是通过机器学习系统进行的,该系统使用从RoI分类器的结果计算出的一套特征进行训练。通过6倍交叉验证,该管道的诊断准确率、灵敏度和特异性分别为91.89%、87.23%和100.00%。使用RoI预测的多数投票得出的置信度值,接收算子特征曲线(ROC AUC)下的最佳面积为97.16%。最佳roi水平分类器的平均toptopus与artifact准确率、灵敏度、特异性和ROC AUC分别为89.61%、85.42%、93.70%和92.72%。结果表明,机器/深度学习有助于高特异性痛风诊断,同时保持可观的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信