Fetal MRI deep learning segmentation of body and lung in congenital diaphragmatic hernia.

Radiology advances Pub Date : 2024-12-12 eCollection Date: 2025-01-01 DOI:10.1093/radadv/umae034
Leon M Bischoff, Sebastian Nowak, Maximilian Mader, Maike Theis, Thomas Vollbrecht, Alexander Isaak, Daniel Kuetting, Claus C Pieper, Annegret Geipel, Florian Kipfmueller, Brigitte Strizek, Alois M Sprinkart, Julian A Luetkens
{"title":"Fetal MRI deep learning segmentation of body and lung in congenital diaphragmatic hernia.","authors":"Leon M Bischoff, Sebastian Nowak, Maximilian Mader, Maike Theis, Thomas Vollbrecht, Alexander Isaak, Daniel Kuetting, Claus C Pieper, Annegret Geipel, Florian Kipfmueller, Brigitte Strizek, Alois M Sprinkart, Julian A Luetkens","doi":"10.1093/radadv/umae034","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine if deep learning (DL) segmentation of total fetal body volume (TFBV) and total fetal lung volume (TFLV) in fetuses with congenital diaphragmatic hernia has comparable performance to manual segmentation.</p><p><strong>Materials and methods: </strong>A total of 208 fetal MRI studies with congenital diaphragmatic hernia, acquired between August 2007 and September 2023, were retrospectively included. TFBV and TFLV were extracted from manual tissue segmentations in balanced gradient echo and single shot T2-weighted turbo spin echo sequences. MRI studies were split into training (n = 188) and hold-out test data (n = 20). Wilcoxon signed-rank test was used to compare manual and DL-based segmentations by 2 U-Nets. Manual and DL segmentation times were noted and compared using Student's t-test. The observed/expected ratio of the total lung volume (O/E TLV) as a prognostic marker for postnatal survival was calculated. Outcome predictions of O/E TLV for postnatal death were assessed with univariate regression analysis.</p><p><strong>Results: </strong>Manual segmentation times were higher compared to DL segmentations (30 ± 7 minutes versus 0.25 ± 0.05 minutes, <i>P </i><<i> </i>.001). Manual and DL-based TFBV were similar (1317 ± 498 mL versus 1306 ± 491 mL; <i>P</i> = .04; Dice score: 0.98 ± 0.01). TFLV (19.4 ± 11.5 mL versus 18.7 ± 12.4 mL; <i>P = </i>.11; Dice score: 0.84 ± 0.09) and O/E TLV (39.3 ± 18.1 mL versus 37.7 ± 19.1 mL, <i>P = </i>.13) were not significantly different. Postnatal mortality was negatively associated with higher manual O/E TLV (odds ratio: 0.97; 95% confidence interval [CI], 0.96-0.98; <i>P </i><<i> </i>.001) and DL O/E TLV (odds ratio: 0.97; 95% CI, 0.96-0.98; <i>P </i><<i> </i>.001).</p><p><strong>Conclusion: </strong>DL for body and lung segmentation in fetuses with congenital diaphragmatic hernia allows reliable and rapid calculations of the observed/expected ratio and equally predicts prognostic outcome.</p>","PeriodicalId":519940,"journal":{"name":"Radiology advances","volume":"2 1","pages":"umae034"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/radadv/umae034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To determine if deep learning (DL) segmentation of total fetal body volume (TFBV) and total fetal lung volume (TFLV) in fetuses with congenital diaphragmatic hernia has comparable performance to manual segmentation.

Materials and methods: A total of 208 fetal MRI studies with congenital diaphragmatic hernia, acquired between August 2007 and September 2023, were retrospectively included. TFBV and TFLV were extracted from manual tissue segmentations in balanced gradient echo and single shot T2-weighted turbo spin echo sequences. MRI studies were split into training (n = 188) and hold-out test data (n = 20). Wilcoxon signed-rank test was used to compare manual and DL-based segmentations by 2 U-Nets. Manual and DL segmentation times were noted and compared using Student's t-test. The observed/expected ratio of the total lung volume (O/E TLV) as a prognostic marker for postnatal survival was calculated. Outcome predictions of O/E TLV for postnatal death were assessed with univariate regression analysis.

Results: Manual segmentation times were higher compared to DL segmentations (30 ± 7 minutes versus 0.25 ± 0.05 minutes, P <.001). Manual and DL-based TFBV were similar (1317 ± 498 mL versus 1306 ± 491 mL; P = .04; Dice score: 0.98 ± 0.01). TFLV (19.4 ± 11.5 mL versus 18.7 ± 12.4 mL; P = .11; Dice score: 0.84 ± 0.09) and O/E TLV (39.3 ± 18.1 mL versus 37.7 ± 19.1 mL, P = .13) were not significantly different. Postnatal mortality was negatively associated with higher manual O/E TLV (odds ratio: 0.97; 95% confidence interval [CI], 0.96-0.98; P <.001) and DL O/E TLV (odds ratio: 0.97; 95% CI, 0.96-0.98; P <.001).

Conclusion: DL for body and lung segmentation in fetuses with congenital diaphragmatic hernia allows reliable and rapid calculations of the observed/expected ratio and equally predicts prognostic outcome.

Abstract Image

Abstract Image

Abstract Image

先天性膈疝的胎儿MRI深度学习分割。
目的:探讨深度学习(DL)分割先天性膈疝胎儿的总胎体体积(TFBV)和总胎肺体积(TFLV)是否与手工分割具有可比性。材料和方法:回顾性分析2007年8月至2023年9月期间获得的208例先天性膈疝胎儿MRI研究。在平衡梯度回波和单次t2加权涡轮自旋回波序列中提取人工组织分割的TFBV和TFLV。MRI研究分为训练数据(n = 188)和保留测试数据(n = 20)。使用Wilcoxon符号秩检验比较2个U-Nets的人工和基于dl的分割。使用学生t检验记录和比较手工和DL分割时间。计算肺总容积(O/E TLV)的观察/预期比,作为产后生存的预后指标。采用单因素回归分析评估O/E TLV对产后死亡的预后预测。结果:人工分割时间比深度分割时间长(30±7分钟vs 0.25±0.05分钟,P .001)。手动TFBV与基于dl的TFBV相似(1317±498 mL vs 1306±491 mL; P = 0.04; Dice评分:0.98±0.01)。TFLV(19.4±11.5毫升和18.7±12.4毫升;P =厚;骰子得分:0.84±0.09)和O / E电磁阀(39.3±18.1毫升和37.7±19.1毫升,P =。13)无显著差异。产后死亡率与较高的人工O/E TLV呈负相关(优势比:0.97;95%可信区间[CI], 0.96-0.98; P。001)和DL O/E TLV(优势比:0.97;95% CI, 0.96-0.98; P .001)。结论:先天性膈疝胎儿的身体和肺分割DL可以可靠、快速地计算观察/预期比率,并同样预测预后结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信