18F-FDG-PET-based deep learning for predicting cognitive decline in non-demented elderly across the Alzheimer's disease clinical spectrum.

Radiology advances Pub Date : 2024-08-10 eCollection Date: 2024-09-01 DOI:10.1093/radadv/umae021
Beomseok Sohn, Seok Jong Chung, Jeong Ryong Lee, Dosik Hwang, Wanying Xie, Ling Ling Chan, Yoon Seong Choi
{"title":"<sup>18</sup>F-FDG-PET-based deep learning for predicting cognitive decline in non-demented elderly across the Alzheimer's disease clinical spectrum.","authors":"Beomseok Sohn, Seok Jong Chung, Jeong Ryong Lee, Dosik Hwang, Wanying Xie, Ling Ling Chan, Yoon Seong Choi","doi":"10.1093/radadv/umae021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With disease-modifying treatments for Alzheimer's disease (AD), prognostic tools for the pre-dementia stage are needed. This study aimed to evaluate the prognostic value of an <sup>18</sup>F-fluorodeoxyglucose-positron emission tomography (<sup>18</sup>F-FDG-PET)-based deep-learning (DL) model in the pre-dementia stage of mild cognitive impairment (MCI) and normal cognition (NC).</p><p><strong>Materials and methods: </strong>A <sup>18</sup>F-FDG-PET-based DL model was developed to classify diagnosis of AD-dementia vs NC using AD Neuroimaging Initiative (ADNI) and Japanese-ADNI (J-ADNI) datasets (<i>n</i> = 756), which provided the degree of similarity to AD-dementia. The prognostic value of the DL output for cognitive decline was assessed in the ADNI MCI (<i>n</i> = 663), J-ADNI MCI (<i>n</i> = 129), and Harvard Aging Brain Study (HABS) NC (<i>n</i> = 274) participants using Cox regression and calculating the integrated area under the time-dependent ROC curves (iAUC), along with clinical information and <sup>18</sup>F-FDG-PET standardized uptake value ratio (SUVR). Subgroup analysis in the amyloid-positive ADNI MCI participants was performed using Cox regression and calculating the area under the time-dependent ROC (tdAUC) curves at 4-year follow-up to assess prognostic value of DL output over clinical information, <sup>18</sup>F-FDG-PET SUVR, and amyloid PET Centiloids.</p><p><strong>Results: </strong>DL output remained independently prognostic among other factors in all three datasets (<i>P</i> < .05 for all by Cox regression). By adding DL output to other prognostic factors, prediction significantly improved in ADNI-MCI (iAUC differences 0.020 [0.007-0.034] before and after adding DL output) and improved without statistical significance in J-ADNI (0.020 [-0.005 to 0.044], and HABS-NC sets (0.059 [-0.003 to 0.126]). DL output showed independent (<i>P</i> = .002 by Cox regression) and significant added prognostic value (tdROC difference 0.019 [<0.001-0.036]) over clinical information, <sup>18</sup>F-FDG-PET SUVR, and Centiloids in the amyloid-positive ADNI MCI participants.</p><p><strong>Conclusion: </strong>The <sup>18</sup>F-FDG-PET-based DL model demonstrated the potential to improve cognitive decline prediction beyond clinical information, and conventional measures from <sup>18</sup>F-FDG-PET and amyloid PET and may prove useful for clinical trial recruitment and individualized management.</p>","PeriodicalId":519940,"journal":{"name":"Radiology advances","volume":"1 3","pages":"umae021"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/radadv/umae021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: With disease-modifying treatments for Alzheimer's disease (AD), prognostic tools for the pre-dementia stage are needed. This study aimed to evaluate the prognostic value of an 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET)-based deep-learning (DL) model in the pre-dementia stage of mild cognitive impairment (MCI) and normal cognition (NC).

Materials and methods: A 18F-FDG-PET-based DL model was developed to classify diagnosis of AD-dementia vs NC using AD Neuroimaging Initiative (ADNI) and Japanese-ADNI (J-ADNI) datasets (n = 756), which provided the degree of similarity to AD-dementia. The prognostic value of the DL output for cognitive decline was assessed in the ADNI MCI (n = 663), J-ADNI MCI (n = 129), and Harvard Aging Brain Study (HABS) NC (n = 274) participants using Cox regression and calculating the integrated area under the time-dependent ROC curves (iAUC), along with clinical information and 18F-FDG-PET standardized uptake value ratio (SUVR). Subgroup analysis in the amyloid-positive ADNI MCI participants was performed using Cox regression and calculating the area under the time-dependent ROC (tdAUC) curves at 4-year follow-up to assess prognostic value of DL output over clinical information, 18F-FDG-PET SUVR, and amyloid PET Centiloids.

Results: DL output remained independently prognostic among other factors in all three datasets (P < .05 for all by Cox regression). By adding DL output to other prognostic factors, prediction significantly improved in ADNI-MCI (iAUC differences 0.020 [0.007-0.034] before and after adding DL output) and improved without statistical significance in J-ADNI (0.020 [-0.005 to 0.044], and HABS-NC sets (0.059 [-0.003 to 0.126]). DL output showed independent (P = .002 by Cox regression) and significant added prognostic value (tdROC difference 0.019 [<0.001-0.036]) over clinical information, 18F-FDG-PET SUVR, and Centiloids in the amyloid-positive ADNI MCI participants.

Conclusion: The 18F-FDG-PET-based DL model demonstrated the potential to improve cognitive decline prediction beyond clinical information, and conventional measures from 18F-FDG-PET and amyloid PET and may prove useful for clinical trial recruitment and individualized management.

Abstract Image

Abstract Image

Abstract Image

基于18f - fdg - pet的深度学习预测阿尔茨海默病临床谱系中非痴呆老年人的认知能力下降
背景:随着阿尔茨海默病(AD)的疾病改善治疗,需要痴呆前期的预后工具。本研究旨在评估基于18f -氟脱氧葡萄糖-正电子发射断层扫描(18F-FDG-PET)的深度学习(DL)模型在轻度认知障碍(MCI)和正常认知(NC)痴呆前阶段的预后价值。材料和方法:利用AD神经成像计划(ADNI)和日本-ADNI (J-ADNI)数据集(n = 756)建立了基于18f - fdg - pet的DL模型,对AD-痴呆和NC的诊断进行分类,这些数据集提供了与AD-痴呆的相似程度。在ADNI MCI (n = 663)、J-ADNI MCI (n = 129)和哈佛衰老脑研究(HABS) NC (n = 274)参与者中,使用Cox回归和计算随时间变化的ROC曲线(iAUC)下的综合面积,以及临床信息和18F-FDG-PET标准化摄取值比(SUVR),评估DL输出对认知衰退的预后价值。对淀粉样蛋白阳性ADNI MCI参与者进行亚组分析,使用Cox回归并计算4年随访时时间依赖性ROC曲线下的面积,以评估DL输出比临床信息、18F-FDG-PET SUVR和淀粉样蛋白PET Centiloids的预后价值。结果:在所有三个数据集中,深度学习输出仍然是独立的预后因素(P P =。在淀粉样蛋白阳性的ADNI MCI参与者中,tdROC差异0.019 [18F-FDG-PET SUVR,和Centiloids]具有显著的预后价值。结论:基于18F-FDG-PET的DL模型显示出超越临床信息和18F-FDG-PET和淀粉样蛋白PET的常规测量方法的认知衰退预测的潜力,可能对临床试验招募和个体化管理有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信