Cross-institutional automated multilabel segmentation for acute intracerebral hemorrhage, intraventricular hemorrhage, and perihematomal edema on CT.

Radiology advances Pub Date : 2025-03-21 eCollection Date: 2025-03-01 DOI:10.1093/radadv/umaf012
Jawed Nawabi, Georg Lukas Baumgaertner, Sophia Schulze-Weddige, Andrea Dell'Orco, Andrea Morotti, Federico Mazzacane, Helge Kniep, Frieder Schlunk, Maik Franz Hermann Boehmer, Burak Han Akkurt, Tobias Orth, Jana-Sofie Weissflog, Maik Schumann, Peter B Sporns, Michael Scheel, Uta Hanning, Jens Fiehler, Tobias Penzkofer
{"title":"Cross-institutional automated multilabel segmentation for acute intracerebral hemorrhage, intraventricular hemorrhage, and perihematomal edema on CT.","authors":"Jawed Nawabi, Georg Lukas Baumgaertner, Sophia Schulze-Weddige, Andrea Dell'Orco, Andrea Morotti, Federico Mazzacane, Helge Kniep, Frieder Schlunk, Maik Franz Hermann Boehmer, Burak Han Akkurt, Tobias Orth, Jana-Sofie Weissflog, Maik Schumann, Peter B Sporns, Michael Scheel, Uta Hanning, Jens Fiehler, Tobias Penzkofer","doi":"10.1093/radadv/umaf012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precise volume quantification of intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and perihematomal edema (PHE) is a critical parameter for guiding therapy decisions, monitoring therapeutic effects over time, and predicting patient outcomes.</p><p><strong>Purpose: </strong>To evaluate a nnU-Net-based deep learning model for automated, multilesion segmentation on non-contrast CT.</p><p><strong>Materials and methods: </strong>Retrospective data from acute spontaneous ICH patients admitted to 4 stroke centers (2015-2022) and controls (2022-2023) were analyzed. Manual segmentations served as ground truth with repeated segmentations as reference standard. nnU-Net was trained (<i>n</i> = 775) using 5-fold cross-validation and tested on a holdout set (<i>n</i> = 189). Lesion detection, segmentation, and volumetric accuracy were evaluated using the Dice similarity coefficient (DSC) and Pearson correlation coefficients (r), with subanalyses for anatomical location and impact of other hemorrhage types (subarachnoid, subdural, or epidural hematoma). The model was validated on internal (<i>n</i> = 121) and external (<i>n</i> = 169) datasets. Processing time was compared to manual segmentation.</p><p><strong>Results: </strong>Test set sensitivity was 99% for ICH and PHE and 97% for IVH. Segmentation achieved a DSC of 0.91 (ICH), 0.71 (PHE), and 0.76 (IVH), with <i>r</i> = 0.99 (ICH, IVH) and <i>r</i> = 0.92 (PHE). DSC for lobar and deep hemorrhages were 0.90 and 0.92, respectively, and 0.70 in the brainstem, with other hemorrhage types showing no significant impact on segmentation accuracy, <i>P</i> > .05. For internal validation, DSC was 0.88 (ICH), 0.66 (PHE), and 0.80 (IVH), with r of 0.98, 0.88, and 0.98, respectively. External validation yielded DSC values of 0.85 (ICH), 0.61 (PHE), and 0.80 (IVH), with <i>r</i> values of 0.97, 0.85, and 0.96. Mean processing time was 18.2 s (±5 SD), compared to 18.01 min (±20.47 SD) for manual segmentations.</p><p><strong>Conclusion: </strong>nnU-Net enables reliable, time-efficient segmentation of ICH, PHE, and IVH, validated across multicenter, multivendor datasets of spontaneous ICH, showing potential to enhance clinical workflows.</p>","PeriodicalId":519940,"journal":{"name":"Radiology advances","volume":"2 2","pages":"umaf012"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/radadv/umaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Precise volume quantification of intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and perihematomal edema (PHE) is a critical parameter for guiding therapy decisions, monitoring therapeutic effects over time, and predicting patient outcomes.

Purpose: To evaluate a nnU-Net-based deep learning model for automated, multilesion segmentation on non-contrast CT.

Materials and methods: Retrospective data from acute spontaneous ICH patients admitted to 4 stroke centers (2015-2022) and controls (2022-2023) were analyzed. Manual segmentations served as ground truth with repeated segmentations as reference standard. nnU-Net was trained (n = 775) using 5-fold cross-validation and tested on a holdout set (n = 189). Lesion detection, segmentation, and volumetric accuracy were evaluated using the Dice similarity coefficient (DSC) and Pearson correlation coefficients (r), with subanalyses for anatomical location and impact of other hemorrhage types (subarachnoid, subdural, or epidural hematoma). The model was validated on internal (n = 121) and external (n = 169) datasets. Processing time was compared to manual segmentation.

Results: Test set sensitivity was 99% for ICH and PHE and 97% for IVH. Segmentation achieved a DSC of 0.91 (ICH), 0.71 (PHE), and 0.76 (IVH), with r = 0.99 (ICH, IVH) and r = 0.92 (PHE). DSC for lobar and deep hemorrhages were 0.90 and 0.92, respectively, and 0.70 in the brainstem, with other hemorrhage types showing no significant impact on segmentation accuracy, P > .05. For internal validation, DSC was 0.88 (ICH), 0.66 (PHE), and 0.80 (IVH), with r of 0.98, 0.88, and 0.98, respectively. External validation yielded DSC values of 0.85 (ICH), 0.61 (PHE), and 0.80 (IVH), with r values of 0.97, 0.85, and 0.96. Mean processing time was 18.2 s (±5 SD), compared to 18.01 min (±20.47 SD) for manual segmentations.

Conclusion: nnU-Net enables reliable, time-efficient segmentation of ICH, PHE, and IVH, validated across multicenter, multivendor datasets of spontaneous ICH, showing potential to enhance clinical workflows.

急性脑出血、脑室内出血和血肿周围水肿的CT跨机构自动多标签分割。
背景:脑出血(ICH)、脑室内出血(IVH)和血肿周围水肿(PHE)的精确体积量化是指导治疗决策、监测治疗效果和预测患者预后的关键参数。目的:评估基于nnu - net的深度学习模型在非对比CT上的自动多病灶分割。材料与方法:回顾性分析4个脑卒中中心收治的急性自发性脑出血患者(2015-2022年)和对照组(2022-2023年)的数据。人工分割作为基础真值,重复分割作为参考标准。使用5倍交叉验证对nnU-Net进行训练(n = 775),并在保留集(n = 189)上进行测试。使用Dice相似系数(DSC)和Pearson相关系数(r)评估病变检测、分割和体积准确性,并对解剖位置和其他出血类型(蛛网膜下、硬膜下或硬膜外血肿)的影响进行亚分析。该模型在内部(n = 121)和外部(n = 169)数据集上进行了验证。比较了人工分割的处理时间。结果:ICH和PHE的敏感性为99%,IVH的敏感性为97%。分割的DSC分别为0.91 (ICH)、0.71 (PHE)和0.76 (IVH),其中r = 0.99 (ICH、IVH)和r = 0.92 (PHE)。大叶和深部出血的DSC分别为0.90和0.92,脑干出血的DSC为0.70,其他出血类型对分割精度无显著影响,P < 0.05。内部验证的DSC为0.88 (ICH)、0.66 (PHE)和0.80 (IVH), r分别为0.98、0.88和0.98。外部验证的DSC值为0.85 (ICH)、0.61 (PHE)和0.80 (IVH), r值分别为0.97、0.85和0.96。平均处理时间为18.2 s(±5 SD),而人工分割为18.01 min(±20.47 SD)。结论:nnU-Net能够可靠、高效地分割脑出血、PHE和IVH,并在多中心、多供应商的自发性脑出血数据集上得到验证,显示出增强临床工作流程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信