Dual-[18FMISO + 18FLT] PET/CT and MRI imaging in glioblastoma.

IF 3.2
Medical physics Pub Date : 2025-10-01 DOI:10.1002/mp.18124
Sadek A Nehmeh, Chang Cui, Rajiv Magge, Theodore H Schwartz, Jazmin Schwartz, Benjamin Liechty, Phelipi Schuck, Stefaan Guhlke, William Calimag, Ramon F Barajas, Dan Kadrmas, Howard Fine, Jana Ivanidze
{"title":"Dual-[<sup>18</sup>FMISO + <sup>18</sup>FLT] PET/CT and MRI imaging in glioblastoma.","authors":"Sadek A Nehmeh, Chang Cui, Rajiv Magge, Theodore H Schwartz, Jazmin Schwartz, Benjamin Liechty, Phelipi Schuck, Stefaan Guhlke, William Calimag, Ramon F Barajas, Dan Kadrmas, Howard Fine, Jana Ivanidze","doi":"10.1002/mp.18124","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor hypoxia and proliferation are independent predictors of poor prognosis in glioblastoma and WHO grade 4 IDH-mutant astrocytoma, and are closely linked and can synergistically contribute to local recurrence (LR) and poor overall survival (OS). These two hallmarks can be imaged using FMISO and FLT PET, but only on different days due to the PET intrinsic limitation, which jeopardizes the clinical feasibility and accuracy of multi-parametric studies.</p><p><strong>Purpose: </strong>In this study, we assess the feasibility of dual-[FMISO+FLT]-PET in a cohort of patients with glioblastoma and WHO grade 4 IDH-mutant astrocytoma.</p><p><strong>Methods: </strong>Eight patients underwent 90 min dynamic PET (dynPET) with staggered FMISO/FLT injections followed by two 10 min scans at 120 and 180 min post-FMISO injection, respectively. The target volume (TV) was delineated on the 180-min imageset. The FMISO input function (IF) was derived from dynPET images of the carotids using the first 50 min, and then extrapolated to the rest of dynPET using a 3-exp fit. The IF<sub>FLT</sub> was deduced by subtracting the IF<sub>FMISO</sub> from IF<sub>FMISO+FLT</sub> over the range > 50 min. The FMISO and FLT kinetic rate constants (KRCs) of the TV and cerebellar cortex (reference tissue) were estimated using kinetic modeling (KM) with a parallel dual-1-tissue-2-compartment model.</p><p><strong>Results: </strong>Seven out of eight patients with a total of 13 lesions completed the study. All lesions were [FMISO+FLT]-avid at 180 min post-FMISO injection with a mean SUVR of 1.72 (range:1.26-3.23). IDH-mutant WHO grade 4 astrocytomas showed reduced tumor hypoxia. Mean lesion KRCs were K<sub>1-FMISO </sub>= 0.18 mL/cc/min (range:0.042-0.432), k<sub>i-FMISO </sub>= 0.011 min<sup>-1</sup> (range:0.00-0.039), K<sub>1-FLT </sub>= 0.103 mL/cc/min (range: 0.004-0.357), and K<sub>i-FLT </sub>= 0.014 mL/min/g (range: 0.00-0.062). Cerebellar cortex KRCs were K<sub>1-FMISO </sub>= 0.098 mL/cc/min (range:0.055-0.225), k<sub>i-FMISO </sub>= 0.008 min<sup>-1</sup> (range:0.002-0.014), K<sub>1-FLT </sub>= 0.089 mL/cc/min (range: 0.001-0.299), and K<sub>i-FLT </sub>= 0.003 mL/min/g (range:0.00-0.007). Lesion perfusion and hypoxia were inversely correlated (R = 0.99).</p><p><strong>Conclusions: </strong>Dual-[FMISO+FLT]-PET can provide detailed characterization of tumor microenvironment and interaction of multiple hallmarks that yield radio-resistance. This can improve the accuracy of image-guided radiosurgery and radiotherapy, thereby improving clinical outcomes in patients with glioblastoma and IDH-mutant WHO grade 4 astrocytoma.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":"52 10","pages":"e18124"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.18124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tumor hypoxia and proliferation are independent predictors of poor prognosis in glioblastoma and WHO grade 4 IDH-mutant astrocytoma, and are closely linked and can synergistically contribute to local recurrence (LR) and poor overall survival (OS). These two hallmarks can be imaged using FMISO and FLT PET, but only on different days due to the PET intrinsic limitation, which jeopardizes the clinical feasibility and accuracy of multi-parametric studies.

Purpose: In this study, we assess the feasibility of dual-[FMISO+FLT]-PET in a cohort of patients with glioblastoma and WHO grade 4 IDH-mutant astrocytoma.

Methods: Eight patients underwent 90 min dynamic PET (dynPET) with staggered FMISO/FLT injections followed by two 10 min scans at 120 and 180 min post-FMISO injection, respectively. The target volume (TV) was delineated on the 180-min imageset. The FMISO input function (IF) was derived from dynPET images of the carotids using the first 50 min, and then extrapolated to the rest of dynPET using a 3-exp fit. The IFFLT was deduced by subtracting the IFFMISO from IFFMISO+FLT over the range > 50 min. The FMISO and FLT kinetic rate constants (KRCs) of the TV and cerebellar cortex (reference tissue) were estimated using kinetic modeling (KM) with a parallel dual-1-tissue-2-compartment model.

Results: Seven out of eight patients with a total of 13 lesions completed the study. All lesions were [FMISO+FLT]-avid at 180 min post-FMISO injection with a mean SUVR of 1.72 (range:1.26-3.23). IDH-mutant WHO grade 4 astrocytomas showed reduced tumor hypoxia. Mean lesion KRCs were K1-FMISO = 0.18 mL/cc/min (range:0.042-0.432), ki-FMISO = 0.011 min-1 (range:0.00-0.039), K1-FLT = 0.103 mL/cc/min (range: 0.004-0.357), and Ki-FLT = 0.014 mL/min/g (range: 0.00-0.062). Cerebellar cortex KRCs were K1-FMISO = 0.098 mL/cc/min (range:0.055-0.225), ki-FMISO = 0.008 min-1 (range:0.002-0.014), K1-FLT = 0.089 mL/cc/min (range: 0.001-0.299), and Ki-FLT = 0.003 mL/min/g (range:0.00-0.007). Lesion perfusion and hypoxia were inversely correlated (R = 0.99).

Conclusions: Dual-[FMISO+FLT]-PET can provide detailed characterization of tumor microenvironment and interaction of multiple hallmarks that yield radio-resistance. This can improve the accuracy of image-guided radiosurgery and radiotherapy, thereby improving clinical outcomes in patients with glioblastoma and IDH-mutant WHO grade 4 astrocytoma.

胶质母细胞瘤的双[18FMISO + 18FLT] PET/CT和MRI成像。
背景:肿瘤缺氧和增殖是胶质母细胞瘤和WHO级4级idh突变星形细胞瘤预后不良的独立预测因素,两者密切相关,可协同导致局部复发(LR)和总生存期(OS)差。使用FMISO和FLT PET可以对这两个特征进行成像,但由于PET的固有局限性,只能在不同的日期成像,这危及了多参数研究的临床可行性和准确性。目的:在这项研究中,我们评估了双[FMISO+FLT]- pet在胶质母细胞瘤和WHO级4级idh突变星形细胞瘤患者队列中的可行性。方法:8例患者接受90分钟动态PET (dynPET),交错注射FMISO/FLT,然后分别在FMISO注射后120和180分钟进行两次10分钟扫描。在180分钟图像集上勾画目标体积(TV)。FMISO输入函数(IF)是从颈动脉前50分钟的dynPET图像中导出的,然后使用3-exp拟合外推到dynPET的其余部分。从IFFMISO+FLT中减去IFFMISO,在bbb50 min范围内推导出IFFLT。采用平行双1组织2室模型的动力学模型(KM)估计了TV和小脑皮层(参比组织)的FMISO和FLT的动力学速率常数(KRCs)。结果:共有13个病变的8例患者中有7例完成了研究。注射FMISO后180分钟,所有病变均为[FMISO+FLT]-avid,平均SUVR为1.72(范围:1.26-3.23)。idh突变的WHO 4级星形细胞瘤显示肿瘤缺氧减少。平均病变KRCs为K1-FMISO = 0.18 mL/cc/min(范围:0.042-0.432),ki-FMISO = 0.011 min-1(范围:0.00-0.039),K1-FLT = 0.103 mL/cc/min(范围:0.004-0.357),Ki-FLT = 0.014 mL/min/g(范围:0.00-0.062)。小脑皮质KRCs为K1-FMISO = 0.098 mL/cc/min(范围:0.055 ~ 0.225),ki-FMISO = 0.008 min-1(范围:0.002 ~ 0.014),K1-FLT = 0.089 mL/cc/min(范围:0.001 ~ 0.299),Ki-FLT = 0.003 mL/min/g(范围:0.007 ~ 0.007)。病变灌注与缺氧呈负相关(R = 0.99)。结论:Dual-[FMISO+FLT]- pet可以提供肿瘤微环境的详细特征以及产生放射抗性的多个标志的相互作用。这可以提高图像引导放射手术和放疗的准确性,从而改善胶质母细胞瘤和idh突变的WHO 4级星形细胞瘤患者的临床预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信