Extracting a COVID-19 signature from a multi-omic dataset.

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-09-22 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1645785
Baptiste Bauvin, Thibaud Godon, Guillaume Bachelot, Claudia Carpentier, Riikka Huusaari, Maxime Deraspe, Juho Rousu, Caroline Quach, Jacques Corbeil
{"title":"Extracting a COVID-19 signature from a multi-omic dataset.","authors":"Baptiste Bauvin, Thibaud Godon, Guillaume Bachelot, Claudia Carpentier, Riikka Huusaari, Maxime Deraspe, Juho Rousu, Caroline Quach, Jacques Corbeil","doi":"10.3389/fbinf.2025.1645785","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The complexity of COVID-19 requires approaches that extend beyond symptom-based descriptors. Multi-omic data, combining clinical, proteomic, and metabolomic information, offer a more detailed view of disease mechanisms and biomarker discovery.</p><p><strong>Methods: </strong>As part of a large-scale Quebec initiative, we collected extensive datasets from COVID-19 positive and negative patient samples. Using a multi-view machine learning framework with ensemble methods, we integrated thousands of features across clinical, proteomic, and metabolomic domains to classify COVID-19 status. We further applied a novel feature relevance methodology to identify condensed signatures.</p><p><strong>Results: </strong>Our models achieved a balanced accuracy of 89% ± 5% despite the high-dimensional nature of the data. Feature selection yielded 12- and 50-feature signatures that improved classification accuracy by at least 3% compared to the full feature set. These signatures were both accurate and interpretable.</p><p><strong>Discussion: </strong>This work demonstrates that multi-omic integration, combined with advanced machine learning, enables the extraction of robust COVID-19 signatures from complex datasets. The condensed biomarker sets provide a practical path toward improved diagnosis and precision medicine, representing a significant advancement in COVID-19 biomarker discovery.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1645785"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1645785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The complexity of COVID-19 requires approaches that extend beyond symptom-based descriptors. Multi-omic data, combining clinical, proteomic, and metabolomic information, offer a more detailed view of disease mechanisms and biomarker discovery.

Methods: As part of a large-scale Quebec initiative, we collected extensive datasets from COVID-19 positive and negative patient samples. Using a multi-view machine learning framework with ensemble methods, we integrated thousands of features across clinical, proteomic, and metabolomic domains to classify COVID-19 status. We further applied a novel feature relevance methodology to identify condensed signatures.

Results: Our models achieved a balanced accuracy of 89% ± 5% despite the high-dimensional nature of the data. Feature selection yielded 12- and 50-feature signatures that improved classification accuracy by at least 3% compared to the full feature set. These signatures were both accurate and interpretable.

Discussion: This work demonstrates that multi-omic integration, combined with advanced machine learning, enables the extraction of robust COVID-19 signatures from complex datasets. The condensed biomarker sets provide a practical path toward improved diagnosis and precision medicine, representing a significant advancement in COVID-19 biomarker discovery.

Abstract Image

Abstract Image

Abstract Image

从多基因组数据集中提取COVID-19特征。
导言:COVID-19的复杂性要求采取超越基于症状描述符的方法。多组学数据,结合临床、蛋白质组学和代谢组学信息,为疾病机制和生物标志物的发现提供了更详细的视角。方法:作为魁北克大规模倡议的一部分,我们从COVID-19阳性和阴性患者样本中收集了大量数据集。使用集成方法的多视图机器学习框架,我们整合了临床、蛋白质组学和代谢组学领域的数千个特征,对COVID-19状态进行分类。我们进一步应用了一种新的特征关联方法来识别压缩签名。结果:尽管数据具有高维性质,但我们的模型实现了89%±5%的平衡精度。特征选择产生了12个和50个特征签名,与完整的特征集相比,分类准确率至少提高了3%。这些签名既准确又可解释。讨论:这项工作表明,多组学集成与先进的机器学习相结合,可以从复杂的数据集中提取稳健的COVID-19特征。浓缩的生物标志物集为改进诊断和精准医疗提供了实用途径,代表了COVID-19生物标志物发现的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信