Parsing GTF and FASTA files using the eccLib Library.

IF 5.4
Tomasz Chady, Zuzanna Karolina Filutowska
{"title":"Parsing GTF and FASTA files using the eccLib Library.","authors":"Tomasz Chady, Zuzanna Karolina Filutowska","doi":"10.1093/bioinformatics/btaf558","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Leveraging the Python/C API, eccLib was developed as a high-performance library designed for parsing genomic files and analysing genomic contexts. To the best of the authors' knowledge, it is the fastest Python-based solution available. With eccLib, users can efficiently parse GTF/GFFv3 and FASTA files and utilise the provided methods for additional analysis.</p><p><strong>Availability and implementation: </strong>This library is implemented in C and distributed under the GPL-3.0 licence. It is compatible with any system that has the Python interpreter (CPython) installed. The use of C enables numerous optimisations at both the implementation and algorithmic levels, which are either unachievable or impractical in Python.</p><p><strong>Contact: </strong>tomcha@st.amu.edu.pl, platyna@amu.edu.pl, eccdna@eccdna.pl.</p><p><strong>Supplementary information: </strong>This library is available for installation from the Python Package Index (PyPI) under the name eccLib  https://pypi.org/project/eccLib/. The source code is available at https://gitlab.platinum.edu.pl/eccdna/eccLib. The version described by this document (1.1.0) is archived as https://doi.org/10.5281/zenodo.17024282. More detailed documentation can be accessed at https://gitlab-pages.platinum.edu.pl/eccdna/eccLib/.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Leveraging the Python/C API, eccLib was developed as a high-performance library designed for parsing genomic files and analysing genomic contexts. To the best of the authors' knowledge, it is the fastest Python-based solution available. With eccLib, users can efficiently parse GTF/GFFv3 and FASTA files and utilise the provided methods for additional analysis.

Availability and implementation: This library is implemented in C and distributed under the GPL-3.0 licence. It is compatible with any system that has the Python interpreter (CPython) installed. The use of C enables numerous optimisations at both the implementation and algorithmic levels, which are either unachievable or impractical in Python.

Contact: tomcha@st.amu.edu.pl, platyna@amu.edu.pl, eccdna@eccdna.pl.

Supplementary information: This library is available for installation from the Python Package Index (PyPI) under the name eccLib  https://pypi.org/project/eccLib/. The source code is available at https://gitlab.platinum.edu.pl/eccdna/eccLib. The version described by this document (1.1.0) is archived as https://doi.org/10.5281/zenodo.17024282. More detailed documentation can be accessed at https://gitlab-pages.platinum.edu.pl/eccdna/eccLib/.

使用eccLib库解析GTF和FASTA文件。
eccLib是利用Python/C API开发的高性能库,用于解析基因组文件和分析基因组上下文。据作者所知,它是最快的基于python的解决方案。使用eccLib,用户可以有效地解析GTF/GFFv3和FASTA文件,并利用提供的方法进行额外的分析。可用性和实现:这个库是用C语言实现的,并在GPL-3.0许可下发布。它与安装了Python解释器(CPython)的任何系统兼容。使用C可以在实现和算法级别进行大量优化,这些优化在Python中要么无法实现,要么不切实际。联系:tomcha@st.amu.edu.pl, platyna@amu.edu.pl, eccdna@eccdna.pl.Supplementary信息:该库可从Python包索引(PyPI)中安装,名称为eccLib https://pypi.org/project/eccLib/。源代码可从https://gitlab.platinum.edu.pl/eccdna/eccLib获得。本文档描述的版本号为1.1.0,存档号为https://doi.org/10.5281/zenodo.17024282。更详细的文档可以访问https://gitlab-pages.platinum.edu.pl/eccdna/eccLib/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信