{"title":"Hierarchical switching pattern in antigenic variation provides survival advantage for malaria parasites under variable host immunity.","authors":"Gayathri Priya Iragavarapu, Varsha Hj, Shruthi Sridhar Vembar, Bhaswar Ghosh","doi":"10.1088/1478-3975/ae1091","DOIUrl":null,"url":null,"abstract":"<p><p>The var multigene family, comprising approximately 60 members, encodes for variants of Plasmodium falciparum erythrocyte membrane protein or PfEMP1, a surface antigen which is crucial for parasite blood stage virulence. var genes are expressed in a mutually exclusive fashion and to evade immune detection, P. falciparum transcriptionally switches from one variant to another. It has been proposed that a biased hierarchical switching pattern optimizes the growth and survival of P. falciparum inside the human host. However, the need to establish a particular hierarchy is not well explored, since the growth advantage to the parasite remains the same even if gene identities are shuffled. Our theoretical analysis based on a Markov chain model, coupled with single cell RNA-seq data analysis, RT-qPCR and RNA-seq measurements, establishes a hierarchical var gene expression pattern underlying the biased switching pattern. Further, inclusion of host immune response in the model suggests that the observed switching hierarchy is beneficial when cells expressing different variants are cleared at variable rates by the immune response. For instance, PfEMP1 variants that are cleared more efficiently by the immune system are expressed stably and at a higher level in the population compared to variants that are cleared slowly by the immune system, with parasites quickly turning off the expression of the slowly cleared variant. Consistent with these findings, analysis of published experimental data showed that stable variants exhibit greater binding affinities to IgM. Taken together, our study provides a mechanistic basis for the hierarchical switching pattern of P. falciparum var genes observed during infection.
.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ae1091","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The var multigene family, comprising approximately 60 members, encodes for variants of Plasmodium falciparum erythrocyte membrane protein or PfEMP1, a surface antigen which is crucial for parasite blood stage virulence. var genes are expressed in a mutually exclusive fashion and to evade immune detection, P. falciparum transcriptionally switches from one variant to another. It has been proposed that a biased hierarchical switching pattern optimizes the growth and survival of P. falciparum inside the human host. However, the need to establish a particular hierarchy is not well explored, since the growth advantage to the parasite remains the same even if gene identities are shuffled. Our theoretical analysis based on a Markov chain model, coupled with single cell RNA-seq data analysis, RT-qPCR and RNA-seq measurements, establishes a hierarchical var gene expression pattern underlying the biased switching pattern. Further, inclusion of host immune response in the model suggests that the observed switching hierarchy is beneficial when cells expressing different variants are cleared at variable rates by the immune response. For instance, PfEMP1 variants that are cleared more efficiently by the immune system are expressed stably and at a higher level in the population compared to variants that are cleared slowly by the immune system, with parasites quickly turning off the expression of the slowly cleared variant. Consistent with these findings, analysis of published experimental data showed that stable variants exhibit greater binding affinities to IgM. Taken together, our study provides a mechanistic basis for the hierarchical switching pattern of P. falciparum var genes observed during infection.
.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.