Prophylactic treatment with progesterone decreases murine miscarriage by suppressing the immunostimulatory activity of macrophages.

IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY
Yuki Kaito, Hajime Ino, Yumi Horii, Asako Watanabe, Makoto Nishigaki, Yumene Kubota, Tomoko Ichikawa, Yasuyuki Negishi, Yoshimitsu Kuwabara, Rimpei Morita, Shunji Suzuki
{"title":"Prophylactic treatment with progesterone decreases murine miscarriage by suppressing the immunostimulatory activity of macrophages.","authors":"Yuki Kaito, Hajime Ino, Yumi Horii, Asako Watanabe, Makoto Nishigaki, Yumene Kubota, Tomoko Ichikawa, Yasuyuki Negishi, Yoshimitsu Kuwabara, Rimpei Morita, Shunji Suzuki","doi":"10.1093/molehr/gaaf050","DOIUrl":null,"url":null,"abstract":"<p><p>Miscarriage and preterm birth (PB) remain major challenges in obstetric care and are often associated with excessive inflammation at the feto-maternal interface. Although the role of progesterone (P4) in maintaining pregnancy is well known, its anti-inflammatory effects in immune-mediated pregnancy complications remain poorly understood. In this study, we investigated the impact of prophylactic P4 administration on miscarriage using a mouse model induced by α- galactosylceramide (αGC), a potent activator of invariant natural killer T (iNKT) cells. Prophylactic, but not therapeutic, P4 administration significantly reduced miscarriage rates. Flow cytometry analysis revealed that P4 suppressed the activity of iNKT cells and the production of inflammatory cytokines by these cells in the myometrium. Moreover, P4 reduced the immunostimulatory activity of antigen-presenting cells, particularly macrophages, by downregulating co-stimulatory molecules and interleukin (IL)-12 production. Immunohistochemistry and flow cytometry results demonstrated that the progesterone receptor (PR) was predominantly expressed on myometrial macrophages. Ex vivo experiments further confirmed that P4 directly modulates macrophage function, decreasing IL-12 and increasing IL-10 production. These findings suggest that prophylactic P4 administration mitigates immune activation at the feto-maternal interface by targeting macrophages, thereby suppressing iNKT cell-mediated inflammation and preventing miscarriage. This study highlights the importance of innate immune modulation in reproductive immunology and the potential of P4 as a prophylactic agent for preventing inflammation-associated miscarriage and PB.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaaf050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Miscarriage and preterm birth (PB) remain major challenges in obstetric care and are often associated with excessive inflammation at the feto-maternal interface. Although the role of progesterone (P4) in maintaining pregnancy is well known, its anti-inflammatory effects in immune-mediated pregnancy complications remain poorly understood. In this study, we investigated the impact of prophylactic P4 administration on miscarriage using a mouse model induced by α- galactosylceramide (αGC), a potent activator of invariant natural killer T (iNKT) cells. Prophylactic, but not therapeutic, P4 administration significantly reduced miscarriage rates. Flow cytometry analysis revealed that P4 suppressed the activity of iNKT cells and the production of inflammatory cytokines by these cells in the myometrium. Moreover, P4 reduced the immunostimulatory activity of antigen-presenting cells, particularly macrophages, by downregulating co-stimulatory molecules and interleukin (IL)-12 production. Immunohistochemistry and flow cytometry results demonstrated that the progesterone receptor (PR) was predominantly expressed on myometrial macrophages. Ex vivo experiments further confirmed that P4 directly modulates macrophage function, decreasing IL-12 and increasing IL-10 production. These findings suggest that prophylactic P4 administration mitigates immune activation at the feto-maternal interface by targeting macrophages, thereby suppressing iNKT cell-mediated inflammation and preventing miscarriage. This study highlights the importance of innate immune modulation in reproductive immunology and the potential of P4 as a prophylactic agent for preventing inflammation-associated miscarriage and PB.

孕酮预防性治疗通过抑制巨噬细胞的免疫刺激活性来减少小鼠流产。
流产和早产(PB)仍然是产科护理的主要挑战,通常与胎母界面过度炎症有关。虽然孕酮(P4)在维持妊娠中的作用是众所周知的,但其在免疫介导的妊娠并发症中的抗炎作用仍然知之甚少。在这项研究中,我们利用α-半乳糖神经酰胺(α gc)诱导的小鼠模型研究了预防性P4给药对流产的影响,α-半乳糖神经酰胺(α gc)是一种有效的不变性自然杀伤T (iNKT)细胞激活剂。预防性而非治疗性给予P4可显著降低流产率。流式细胞术分析显示P4抑制了肌层iNKT细胞的活性和这些细胞产生炎症细胞因子。此外,P4通过下调共刺激分子和白细胞介素(IL)-12的产生,降低了抗原呈递细胞,特别是巨噬细胞的免疫刺激活性。免疫组织化学和流式细胞术结果显示,孕激素受体(PR)主要在肌层巨噬细胞上表达。离体实验进一步证实P4直接调节巨噬细胞功能,降低IL-12,增加IL-10的产生。这些发现表明,预防性给药P4可通过靶向巨噬细胞减轻胎母界面的免疫激活,从而抑制iNKT细胞介导的炎症并预防流产。这项研究强调了先天免疫调节在生殖免疫学中的重要性,以及P4作为预防炎症相关流产和PB的预防剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular human reproduction
Molecular human reproduction 生物-发育生物学
CiteScore
8.30
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信