Miguel Amaral, Felix Frey, Xiuyun Jiang, Buzz Baum, Anđela Šarić
{"title":"Balancing stability and flexibility when reshaping archaeal membranes.","authors":"Miguel Amaral, Felix Frey, Xiuyun Jiang, Buzz Baum, Anđela Šarić","doi":"10.7554/eLife.105432","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular membranes differ across the tree of life. In most bacteria and eukaryotes, single-headed lipids self-assemble into flexible bilayer membranes. By contrast, thermophilic archaea tend to possess bilayer lipids together with double-headed, monolayer spanning bolalipids, which are thought to enable cells to survive in harsh environments. Here, using a minimal computational model for bolalipid membranes, we explore the trade-offs at play when forming membranes. We find that flexible bolalipids form membranes that resemble bilayer membranes because they are able to assume a U-shaped conformation. Conversely, rigid bolalipids, which resemble the bolalipids with cyclic groups found in thermophilic archaea, take on a straight conformation and form membranes that are stiff and prone to pore formation when they undergo changes in shape. Strikingly, however, the inclusion of small amounts of bilayer lipids in a bolalipid membrane is enough to achieve fluid bolalipid membranes that are both stable and flexible, resolving this trade-off. Our study suggests a mechanism by which archaea can tune the material properties of their membranes as and when required to enable them to survive in harsh environments and to undergo essential membrane remodelling events like cell division.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.105432","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular membranes differ across the tree of life. In most bacteria and eukaryotes, single-headed lipids self-assemble into flexible bilayer membranes. By contrast, thermophilic archaea tend to possess bilayer lipids together with double-headed, monolayer spanning bolalipids, which are thought to enable cells to survive in harsh environments. Here, using a minimal computational model for bolalipid membranes, we explore the trade-offs at play when forming membranes. We find that flexible bolalipids form membranes that resemble bilayer membranes because they are able to assume a U-shaped conformation. Conversely, rigid bolalipids, which resemble the bolalipids with cyclic groups found in thermophilic archaea, take on a straight conformation and form membranes that are stiff and prone to pore formation when they undergo changes in shape. Strikingly, however, the inclusion of small amounts of bilayer lipids in a bolalipid membrane is enough to achieve fluid bolalipid membranes that are both stable and flexible, resolving this trade-off. Our study suggests a mechanism by which archaea can tune the material properties of their membranes as and when required to enable them to survive in harsh environments and to undergo essential membrane remodelling events like cell division.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.