{"title":"ShPCFHNet: shepherd parallel convolutional forward harmonic net for spinal cord injury detection using CT images.","authors":"Bhagyashri Thakare, Bhushan Chaudhari, Madhuri Patil, Sachin Kamble","doi":"10.1007/s00586-025-09365-z","DOIUrl":null,"url":null,"abstract":"<p><p>Computed Tomography (CT)has gained recognition as the leading imaging method, extensively used in the diagnosis of spinal cord injuries. The reliance on CT imaging for acute care in patients with Spinal Cord Injury (SCI) has expanded rapidly. However, the diagnosis of initial clinical injury is crucial to accurately predict functional prediction, which is a difficult task for both clinicians and radiologists. To conquer this issue, an efficient model based on SCI detection is proposed, named as Shepard Parallel Convolutional Forward Harmonic Net (ShPCFHNet). The first step involves improving the CT image by applying logarithmic transformations in the enhancement phase. Spinal cord segmentation is then performed with the aid of the proposed Dual-branch UNet, whose loss function is adapted using Sensitivity-Specificity Loss (SSL). Following this, disc localization is carried out using an active contour model, and feature extraction is subsequently performed. The final step involves detecting SCI using ShPCFHNet, which combines the Shepard Convolutional Neural Network (ShCNN) and Parallel Convolutional Neural Network (PCNN) with Harmonic analysis. The proposed model achieved performance metrics of 91.397% accuracy, 92.684% True Positive Rate (TPR), and 90.366% True Negative Rate (TNR).</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-025-09365-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computed Tomography (CT)has gained recognition as the leading imaging method, extensively used in the diagnosis of spinal cord injuries. The reliance on CT imaging for acute care in patients with Spinal Cord Injury (SCI) has expanded rapidly. However, the diagnosis of initial clinical injury is crucial to accurately predict functional prediction, which is a difficult task for both clinicians and radiologists. To conquer this issue, an efficient model based on SCI detection is proposed, named as Shepard Parallel Convolutional Forward Harmonic Net (ShPCFHNet). The first step involves improving the CT image by applying logarithmic transformations in the enhancement phase. Spinal cord segmentation is then performed with the aid of the proposed Dual-branch UNet, whose loss function is adapted using Sensitivity-Specificity Loss (SSL). Following this, disc localization is carried out using an active contour model, and feature extraction is subsequently performed. The final step involves detecting SCI using ShPCFHNet, which combines the Shepard Convolutional Neural Network (ShCNN) and Parallel Convolutional Neural Network (PCNN) with Harmonic analysis. The proposed model achieved performance metrics of 91.397% accuracy, 92.684% True Positive Rate (TPR), and 90.366% True Negative Rate (TNR).
期刊介绍:
"European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts.
Official publication of EUROSPINE, The Spine Society of Europe