Ma–Qiu index, presentation distance, and local moves in knot theory

IF 0.5 4区 数学 Q3 MATHEMATICS
Tetsuya Ito
{"title":"Ma–Qiu index, presentation distance, and local moves in knot theory","authors":"Tetsuya Ito","doi":"10.1007/s00013-025-02168-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Ma–Qiu index of a group is the minimum number of normal generators of the commutator subgroup. We show that the Ma–Qiu index gives a lower bound of the presentation distance of two groups, the minimum number of relator replacements to change one group to the other. Since many local moves in knot theory induce relator replacements in knot groups, this shows that the Ma–Qiu index of knot groups gives a lower bound of the Gordian distance based on various local moves. In particular, this gives a unified and simple proof of the Nakanishi index bounds of various unknotting numbers, including virtual or welded knot cases.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"481 - 489"},"PeriodicalIF":0.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02168-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Ma–Qiu index of a group is the minimum number of normal generators of the commutator subgroup. We show that the Ma–Qiu index gives a lower bound of the presentation distance of two groups, the minimum number of relator replacements to change one group to the other. Since many local moves in knot theory induce relator replacements in knot groups, this shows that the Ma–Qiu index of knot groups gives a lower bound of the Gordian distance based on various local moves. In particular, this gives a unified and simple proof of the Nakanishi index bounds of various unknotting numbers, including virtual or welded knot cases.

Abstract Image

结点理论中的马丘指数、表示距离和局部移动
群的马丘指数是换向子群的最小法向发电机数。我们发现Ma-Qiu指数给出了两组呈现距离的下界,即将一组转换为另一组的最小相关替换数。由于结理论中的许多局部移动会导致结群中的相对替换,这表明结群的Ma-Qiu指数给出了基于各种局部移动的戈地距离的下界。特别地,给出了各种解结数(包括虚结和焊接结)的Nakanishi指数界的统一和简单的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信