Lilit Sahakyan , Claude Colombié , Anna Sukiasyan , Lusine Hambaryan , Taron Grigoryan , Torsten Haberzettl , Thomas Kasper , Zhanneta Stepanyan , Stella Mkrtchyan , Hayk Hovakimyan , Sebastien Joannin , Ara Avagyan
{"title":"Holocene freshwater microbialites of Lake Sevan (Armenia)","authors":"Lilit Sahakyan , Claude Colombié , Anna Sukiasyan , Lusine Hambaryan , Taron Grigoryan , Torsten Haberzettl , Thomas Kasper , Zhanneta Stepanyan , Stella Mkrtchyan , Hayk Hovakimyan , Sebastien Joannin , Ara Avagyan","doi":"10.1016/j.jglr.2025.102647","DOIUrl":null,"url":null,"abstract":"<div><div>Combined onshore and offshore investigations reveal microbialites in Lake Sevan ranging from 1915 m a.s.l. (i.e., 15 m above modern lake level, 1–30 cm thick) to submerged structures (2–5 m wide, 0.4–1 m high) at 45 m water depth. These carbonate deposits exhibit diverse macrostructures such as domical, spherical, tabular, elliptical, planar, and pendant/lobate crusts and oncolites. Thin section and SEM analyses reveal thrombolite microstructures with clots and shrubs, stromatolites (columnar and planar), leiolites, and striated mesostructures. Various types of spherulites, peloids, filamentous structures, microborings, and well-preserved remains of cyanobacteria provide evidence of biological involvement in precipitation. Radiocarbon ages of microbialites range from 9060 <sup>+195</sup>/<sub>-70</sub> to 190 <sup>+125</sup>/<sub>-190</sub> cal BP, based on 10 samples from different locations. Some of these samples indicate periods of natural lake level fluctuations during their formation. Radiated aggregates of fibrous crystals, formed exclusively in the lake’s deep, low-temperature environments, were dated to 1510 <sup>+160</sup>/<sub>-115</sub> cal BP. Geochemical and EDX analyses reveal low-magnesium calcite as the primary precipitate, with secondary rhodochrosite (MnCO<sub>3</sub>) on the surface of submerged samples. Microalgae communities in sand, silt, and water are dominated by Cyanophyta, Bacillariophyta, and Chlorophyta. Cyanobacteria such as <em>Oscillatoria</em> sp. and <em>Anabaena</em> sp. were detected both within microbialites and in the surrounding environments, demonstrating their long-standing presence in the lake. At 4.3 m water depth in Qanagegh, reduced carbonate content in sands is linked to local gas seepage. The abundant presence of cyanobacteria, particularly <em>Oscillatoria limnetica</em>, suggests a relationship between microbial growth and gas-driven geochemical conditions.</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"51 5","pages":"Article 102647"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133025001418","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Combined onshore and offshore investigations reveal microbialites in Lake Sevan ranging from 1915 m a.s.l. (i.e., 15 m above modern lake level, 1–30 cm thick) to submerged structures (2–5 m wide, 0.4–1 m high) at 45 m water depth. These carbonate deposits exhibit diverse macrostructures such as domical, spherical, tabular, elliptical, planar, and pendant/lobate crusts and oncolites. Thin section and SEM analyses reveal thrombolite microstructures with clots and shrubs, stromatolites (columnar and planar), leiolites, and striated mesostructures. Various types of spherulites, peloids, filamentous structures, microborings, and well-preserved remains of cyanobacteria provide evidence of biological involvement in precipitation. Radiocarbon ages of microbialites range from 9060 +195/-70 to 190 +125/-190 cal BP, based on 10 samples from different locations. Some of these samples indicate periods of natural lake level fluctuations during their formation. Radiated aggregates of fibrous crystals, formed exclusively in the lake’s deep, low-temperature environments, were dated to 1510 +160/-115 cal BP. Geochemical and EDX analyses reveal low-magnesium calcite as the primary precipitate, with secondary rhodochrosite (MnCO3) on the surface of submerged samples. Microalgae communities in sand, silt, and water are dominated by Cyanophyta, Bacillariophyta, and Chlorophyta. Cyanobacteria such as Oscillatoria sp. and Anabaena sp. were detected both within microbialites and in the surrounding environments, demonstrating their long-standing presence in the lake. At 4.3 m water depth in Qanagegh, reduced carbonate content in sands is linked to local gas seepage. The abundant presence of cyanobacteria, particularly Oscillatoria limnetica, suggests a relationship between microbial growth and gas-driven geochemical conditions.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.