{"title":"Quenching Mechanism in Rotaxane Mechanophores: Insights from Acene-Based Luminophores","authors":"Keigo Nonaka, Hayato Sakai, Ryusei Mori, Naoki Shimada, Shunsuke Hatatsu, Taku Hasobe, Yoshimitsu Sagara","doi":"10.1039/d5sc05343a","DOIUrl":null,"url":null,"abstract":"Rotaxane-based mechanophores that exploit spatial separation between a luminophore and a quencher are attractive due to their high structural design flexibility, enabling high-contrast changes in fluorescence intensity. However, it remains unclear whether their quenching mechanism is predominantly governed by photoinduced electron transfer (PET) or ground-state charge-transfer (CT) complex formation. This study unveils the quenching mechanism using rotaxane mechanophores incorporating π-extended anthracene, tetracene, or pentacene. In toluene, the quenching efficiency decreases with increasing π-conjugation of the fluorophore. Steady-state and transient absorption spectroscopy clarify that the fluorescence quenching of the anthracene-containing rotaxane is primarily due to PET, with a minor contribution from CT complex formation. In contrast, no clear CT complex formation is observed for the tetracene- and pentacene-containing mechanophores. PET moderately quenches the fluorescence for the tetracene-based system, while the low PET efficiency in the pentacene-containing mechanophore results in minimal quenching. Polyurethane elastomer films containing the anthracene-based mechanophore exhibit a significant increase in fluorescence intensity upon mechanical deformation. In contrast, almost no activation is observed for the pentacene-based mechanophore embedded in polyurethane. These findings clarify that PET is the primary quenching mechanism in rotaxane-based mechanochromic mechanophores, offering valuable insights for the future design of supramolecular mechanophores.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"1 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc05343a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rotaxane-based mechanophores that exploit spatial separation between a luminophore and a quencher are attractive due to their high structural design flexibility, enabling high-contrast changes in fluorescence intensity. However, it remains unclear whether their quenching mechanism is predominantly governed by photoinduced electron transfer (PET) or ground-state charge-transfer (CT) complex formation. This study unveils the quenching mechanism using rotaxane mechanophores incorporating π-extended anthracene, tetracene, or pentacene. In toluene, the quenching efficiency decreases with increasing π-conjugation of the fluorophore. Steady-state and transient absorption spectroscopy clarify that the fluorescence quenching of the anthracene-containing rotaxane is primarily due to PET, with a minor contribution from CT complex formation. In contrast, no clear CT complex formation is observed for the tetracene- and pentacene-containing mechanophores. PET moderately quenches the fluorescence for the tetracene-based system, while the low PET efficiency in the pentacene-containing mechanophore results in minimal quenching. Polyurethane elastomer films containing the anthracene-based mechanophore exhibit a significant increase in fluorescence intensity upon mechanical deformation. In contrast, almost no activation is observed for the pentacene-based mechanophore embedded in polyurethane. These findings clarify that PET is the primary quenching mechanism in rotaxane-based mechanochromic mechanophores, offering valuable insights for the future design of supramolecular mechanophores.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.