A Portable Data Set for Borophene Growth Modeling with Reactive Neural Network Potentials

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Colin Bousige*, , , Anouar-Akacha Delenda, , , Abdul-Rahman Allouche, , and , Pierre Mignon, 
{"title":"A Portable Data Set for Borophene Growth Modeling with Reactive Neural Network Potentials","authors":"Colin Bousige*,&nbsp;, ,&nbsp;Anouar-Akacha Delenda,&nbsp;, ,&nbsp;Abdul-Rahman Allouche,&nbsp;, and ,&nbsp;Pierre Mignon,&nbsp;","doi":"10.1021/acs.jpcc.5c04912","DOIUrl":null,"url":null,"abstract":"<p >In this study, we develop and validate machine learned interaction potentials (MLIPs) for reactive simulation of borophene on metal substrates. A versatile training data set is constructed to accurately represent both extended and reactive borophene structures. It should be portable to train any MLIP architecture. Indeed, three generations of MLIPs, namely n2p2, DeePMD and NNMP, are trained and validated against density functional theory (DFT) calculations. Our results demonstrate the capability of the MLIPs to accurately reproduce DFT-calculated structures, energies, and forces. We finally show that it is possible to use these MLIPs to simulate the growth of borophene on a silver substrate.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 41","pages":"18760–18771"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04912","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we develop and validate machine learned interaction potentials (MLIPs) for reactive simulation of borophene on metal substrates. A versatile training data set is constructed to accurately represent both extended and reactive borophene structures. It should be portable to train any MLIP architecture. Indeed, three generations of MLIPs, namely n2p2, DeePMD and NNMP, are trained and validated against density functional theory (DFT) calculations. Our results demonstrate the capability of the MLIPs to accurately reproduce DFT-calculated structures, energies, and forces. We finally show that it is possible to use these MLIPs to simulate the growth of borophene on a silver substrate.

Abstract Image

Abstract Image

反应性神经网络电位Borophene生长建模的便携式数据集
在这项研究中,我们开发并验证了机器学习相互作用势(MLIPs)用于硼罗芬在金属衬底上的反应模拟。构建了一个通用的训练数据集,以准确地表示扩展和反应性硼苯结构。它应该是可移植的,可以训练任何MLIP体系结构。事实上,三代mlip,即n2p2, DeePMD和NNMP,都是根据密度泛函理论(DFT)计算进行训练和验证的。我们的结果证明了MLIPs能够准确地再现dft计算的结构、能量和力。我们最终证明,可以使用这些mlip来模拟硼罗芬在银衬底上的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信