Using a fine-tuned large language model for symptom-based depression evaluation.

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Samantha Weber,Nicolas Deperrois,Robert Heun,Laura Frühschütz,Anna Monn,Stephanie Homan,Andrea Häfliger,Erich Seifritz,Tobias Kowatsch, ,Birgit Kleim,Sebastian Olbrich
{"title":"Using a fine-tuned large language model for symptom-based depression evaluation.","authors":"Samantha Weber,Nicolas Deperrois,Robert Heun,Laura Frühschütz,Anna Monn,Stephanie Homan,Andrea Häfliger,Erich Seifritz,Tobias Kowatsch, ,Birgit Kleim,Sebastian Olbrich","doi":"10.1038/s41746-025-01982-8","DOIUrl":null,"url":null,"abstract":"Recent advances in artificial intelligence, particularly large language models (LLMs), show promise for mental health applications, including the automated detection of depressive symptoms from natural language. We fine-tuned a German BERT-based LLM to predict individual Montgomery-Åsberg Depression Rating Scale (MADRS) scores using a regression approach across different symptom items (0-6 severity scale), based on structured clinical interviews with transdiagnostic patients as well as synthetically generated interviews. The fine-tuned model achieved a mean absolute error of 0.7-1.0 across items, with accuracies ranging from 79 to 88%, closely matching clinician ratings. Fine-tuning resulted in a 75% reduction in prediction errors relative to the untrained model. These findings demonstrate the potential of lightweight LLMs to accurately assess depressive symptom severity, offering a scalable tool for clinical decision-making, and monitoring treatment progress, particularly in low-resource settings.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"7 1","pages":"598"},"PeriodicalIF":15.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01982-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in artificial intelligence, particularly large language models (LLMs), show promise for mental health applications, including the automated detection of depressive symptoms from natural language. We fine-tuned a German BERT-based LLM to predict individual Montgomery-Åsberg Depression Rating Scale (MADRS) scores using a regression approach across different symptom items (0-6 severity scale), based on structured clinical interviews with transdiagnostic patients as well as synthetically generated interviews. The fine-tuned model achieved a mean absolute error of 0.7-1.0 across items, with accuracies ranging from 79 to 88%, closely matching clinician ratings. Fine-tuning resulted in a 75% reduction in prediction errors relative to the untrained model. These findings demonstrate the potential of lightweight LLMs to accurately assess depressive symptom severity, offering a scalable tool for clinical decision-making, and monitoring treatment progress, particularly in low-resource settings.
使用微调的大型语言模型进行基于症状的抑郁症评估。
人工智能的最新进展,特别是大型语言模型(llm),显示出心理健康应用的前景,包括从自然语言中自动检测抑郁症状。我们对德国基于bert的LLM进行了微调,以预测个体Montgomery-Åsberg抑郁评定量表(MADRS)得分,采用回归方法跨不同症状项目(0-6严重程度量表),基于对跨诊断患者的结构化临床访谈以及综合生成的访谈。经过微调的模型在各个项目上的平均绝对误差为0.7-1.0,准确率在79 - 88%之间,与临床医生的评分非常接近。与未经训练的模型相比,微调使预测误差减少了75%。这些发现证明了轻量级llm在准确评估抑郁症状严重程度方面的潜力,为临床决策提供了可扩展的工具,并监测治疗进展,特别是在资源匮乏的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信