{"title":"Using a fine-tuned large language model for symptom-based depression evaluation.","authors":"Samantha Weber,Nicolas Deperrois,Robert Heun,Laura Frühschütz,Anna Monn,Stephanie Homan,Andrea Häfliger,Erich Seifritz,Tobias Kowatsch, ,Birgit Kleim,Sebastian Olbrich","doi":"10.1038/s41746-025-01982-8","DOIUrl":null,"url":null,"abstract":"Recent advances in artificial intelligence, particularly large language models (LLMs), show promise for mental health applications, including the automated detection of depressive symptoms from natural language. We fine-tuned a German BERT-based LLM to predict individual Montgomery-Åsberg Depression Rating Scale (MADRS) scores using a regression approach across different symptom items (0-6 severity scale), based on structured clinical interviews with transdiagnostic patients as well as synthetically generated interviews. The fine-tuned model achieved a mean absolute error of 0.7-1.0 across items, with accuracies ranging from 79 to 88%, closely matching clinician ratings. Fine-tuning resulted in a 75% reduction in prediction errors relative to the untrained model. These findings demonstrate the potential of lightweight LLMs to accurately assess depressive symptom severity, offering a scalable tool for clinical decision-making, and monitoring treatment progress, particularly in low-resource settings.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"7 1","pages":"598"},"PeriodicalIF":15.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01982-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in artificial intelligence, particularly large language models (LLMs), show promise for mental health applications, including the automated detection of depressive symptoms from natural language. We fine-tuned a German BERT-based LLM to predict individual Montgomery-Åsberg Depression Rating Scale (MADRS) scores using a regression approach across different symptom items (0-6 severity scale), based on structured clinical interviews with transdiagnostic patients as well as synthetically generated interviews. The fine-tuned model achieved a mean absolute error of 0.7-1.0 across items, with accuracies ranging from 79 to 88%, closely matching clinician ratings. Fine-tuning resulted in a 75% reduction in prediction errors relative to the untrained model. These findings demonstrate the potential of lightweight LLMs to accurately assess depressive symptom severity, offering a scalable tool for clinical decision-making, and monitoring treatment progress, particularly in low-resource settings.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.