Peike Wang, Ming Li, Ziteng Wang, Yong-Jin Liu, Lili Wang
{"title":"Multimodal Contrastive Learning for Cybersickness Recognition Using Brain Connectivity Graph Representation.","authors":"Peike Wang, Ming Li, Ziteng Wang, Yong-Jin Liu, Lili Wang","doi":"10.1109/TVCG.2025.3616797","DOIUrl":null,"url":null,"abstract":"<p><p>Cybersickness significantly impairs user comfort and immersion in virtual reality (VR). Effective identification of cybersickness leveraging physiological, visual, and motion data is a critical prerequisite for its mitigation. However, current methods primarily employ direct feature fusion across modalities, which often leads to limited accuracy due to inadequate modeling of inter-modal relationships. In this paper, we propose a multimodal contrastive learning method for cybersickness recognition. First, we introduce Brain Connectivity Graph Representation (BCGR), an innovative graph-based representation that captures cybersickness-related connectivity patterns across modalities. We further develop three BCGR instances: E-BCGR, constructed based on EEG signals; MV-BCGR, constructed based on video and motion data; and S-BCGR, obtained through our proposed standardized decomposition algorithm. Then, we propose a connectivity-constrained contrastive fusion module, which aligns E-BCGR and MV-BCGR into a shared latent space via graph contrastive learning while utilizing S-BCGR as a connectivity constraint to enhance representation quality. Moreover, we construct a multimodal cybersickness dataset comprising synchronized EEG, video, and motion data collected in VR environments to promote further research in this domain. Experimental results demonstrate that our method outperforms existing state-of-the-art methods across four critical evaluation metrics: accuracy, sensitivity, specificity, and the area under the curve. Source code: https://github.com/PEKEW/cybersickness-bcgr.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3616797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cybersickness significantly impairs user comfort and immersion in virtual reality (VR). Effective identification of cybersickness leveraging physiological, visual, and motion data is a critical prerequisite for its mitigation. However, current methods primarily employ direct feature fusion across modalities, which often leads to limited accuracy due to inadequate modeling of inter-modal relationships. In this paper, we propose a multimodal contrastive learning method for cybersickness recognition. First, we introduce Brain Connectivity Graph Representation (BCGR), an innovative graph-based representation that captures cybersickness-related connectivity patterns across modalities. We further develop three BCGR instances: E-BCGR, constructed based on EEG signals; MV-BCGR, constructed based on video and motion data; and S-BCGR, obtained through our proposed standardized decomposition algorithm. Then, we propose a connectivity-constrained contrastive fusion module, which aligns E-BCGR and MV-BCGR into a shared latent space via graph contrastive learning while utilizing S-BCGR as a connectivity constraint to enhance representation quality. Moreover, we construct a multimodal cybersickness dataset comprising synchronized EEG, video, and motion data collected in VR environments to promote further research in this domain. Experimental results demonstrate that our method outperforms existing state-of-the-art methods across four critical evaluation metrics: accuracy, sensitivity, specificity, and the area under the curve. Source code: https://github.com/PEKEW/cybersickness-bcgr.