p-Blend: Privacy- and Utility-Preserving Blendshape Perturbation Against Re-identification Attacks in Virtual Reality.

IF 6.5
Jingwei Liu, Lai Wei, Yan Hu, Guangrong Zhao, Qing Yang, Guangdong Bai, Yiran Shen
{"title":"p-Blend: Privacy- and Utility-Preserving Blendshape Perturbation Against Re-identification Attacks in Virtual Reality.","authors":"Jingwei Liu, Lai Wei, Yan Hu, Guangrong Zhao, Qing Yang, Guangdong Bai, Yiran Shen","doi":"10.1109/TVCG.2025.3616736","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose p-Blend, an efficient and effective blendshape perturbation mechanism designed to defend against both intra- and cross-app re-identification attacks in virtual reality. p-Blend provides privacy protection when streaming blendshape data to third-party applications on VR devices. In its design, we consider both privacy and utility. p-Blend not only perturbs blendshape values to resist re-identification attacks but also preserves the smoothness of facial animations and the naturalness of facial expressions, ensuring the continued usability of the data. We validate the effectiveness of p-Blend through extensive empirical evaluations and user studies. Quantitative experiments on a large-scale dataset collected from 45 participants demonstrate that p-Blend significantly reduces re-identification accuracy across a range of machine learning models. While pure-random perturbation fails to prevent attacks that exploit statistical features, p-Blend effectively mitigates these risks in both raw and statistical blendshape data. Additionally, user study results show that facial animations generated from p-Blend-perturbed blendshapes maintain greater smoothness and naturalness compared to those using purely random perturbation. The codes and dataset are available at https://github.com/jingwei1016/p-Blend.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3616736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose p-Blend, an efficient and effective blendshape perturbation mechanism designed to defend against both intra- and cross-app re-identification attacks in virtual reality. p-Blend provides privacy protection when streaming blendshape data to third-party applications on VR devices. In its design, we consider both privacy and utility. p-Blend not only perturbs blendshape values to resist re-identification attacks but also preserves the smoothness of facial animations and the naturalness of facial expressions, ensuring the continued usability of the data. We validate the effectiveness of p-Blend through extensive empirical evaluations and user studies. Quantitative experiments on a large-scale dataset collected from 45 participants demonstrate that p-Blend significantly reduces re-identification accuracy across a range of machine learning models. While pure-random perturbation fails to prevent attacks that exploit statistical features, p-Blend effectively mitigates these risks in both raw and statistical blendshape data. Additionally, user study results show that facial animations generated from p-Blend-perturbed blendshapes maintain greater smoothness and naturalness compared to those using purely random perturbation. The codes and dataset are available at https://github.com/jingwei1016/p-Blend.

p-Blend:保护隐私和效用的混合形状摄动对抗虚拟现实中的再识别攻击。
在本文中,我们提出了p-Blend,一种高效的混合形状摄动机制,旨在防御虚拟现实中应用程序内部和跨应用程序的重新识别攻击。p-Blend在向VR设备上的第三方应用程序传输blend数据时提供隐私保护。在其设计中,我们同时考虑了私密性和实用性。p-Blend算法不仅对混合形状值进行扰动以抵抗再识别攻击,而且保留了面部动画的平滑性和面部表情的自然性,保证了数据的持续可用性。我们通过广泛的实证评估和用户研究来验证p-Blend的有效性。从45个参与者收集的大规模数据集上进行的定量实验表明,p-Blend显著降低了一系列机器学习模型的重新识别准确性。虽然纯随机扰动无法阻止利用统计特征的攻击,但p-Blend有效地减轻了原始和统计混合形状数据中的这些风险。此外,用户研究结果表明,与使用纯粹随机扰动的混合形状相比,由p- blend摄动混合形状生成的面部动画保持更大的平滑性和自然性。代码和数据集可在https://github.com/jingwei1016/p-Blend上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信