Reliability-Aware Semi-supervised Mutual Learning for Acute Ischemic Stroke Lesion Segmentation.

Shiwei Hu, Hongqing Zhu, Ziying Wang, Ning Chen, Kai Chen, Zhong Zheng, Weiping Lu, Ying Wang, Bingcang Huang
{"title":"Reliability-Aware Semi-supervised Mutual Learning for Acute Ischemic Stroke Lesion Segmentation.","authors":"Shiwei Hu, Hongqing Zhu, Ziying Wang, Ning Chen, Kai Chen, Zhong Zheng, Weiping Lu, Ying Wang, Bingcang Huang","doi":"10.1007/s10278-025-01707-z","DOIUrl":null,"url":null,"abstract":"<p><p>For patients with acute ischemic stroke (AIS), rapid and accurate lesion localization is critical for improving treatment outcomes. However, automatic stroke lesion segmentation remains highly challenging due to the scarcity of large-scale annotated datasets. Recently, semi-supervised learning (SSL) has achieved remarkable progress in medical image segmentation, yet its performance is still hindered by unreliable pseudo-labels. To address this issue, we propose a novel SSL framework, termed reliability-aware mutual learning (RAML), which employs two subnetworks with a shared encoder, a primary decoder, and an auxiliary decoder. Specifically, RAML introduces uncertain region relearning (URR) regularization, which leverages prediction uncertainty from both subnetworks to identify and refine unreliable regions in labeled images. For unlabeled images, reliability-aware mutual pseudo-supervision (RMPS) regularization is designed to enable cross-supervision based on reliable pseudo-labels. Furthermore, feature difference learning (FDL) regularization is incorporated to promote prediction diversity across subnetworks. Experiments on two acute ischemic stroke datasets and the Left Atrium dataset demonstrate the effectiveness of the proposed RAML in semi-supervised segmentation tasks. The code for this project is available at https://github.com/EricMedimuist/RAML.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01707-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For patients with acute ischemic stroke (AIS), rapid and accurate lesion localization is critical for improving treatment outcomes. However, automatic stroke lesion segmentation remains highly challenging due to the scarcity of large-scale annotated datasets. Recently, semi-supervised learning (SSL) has achieved remarkable progress in medical image segmentation, yet its performance is still hindered by unreliable pseudo-labels. To address this issue, we propose a novel SSL framework, termed reliability-aware mutual learning (RAML), which employs two subnetworks with a shared encoder, a primary decoder, and an auxiliary decoder. Specifically, RAML introduces uncertain region relearning (URR) regularization, which leverages prediction uncertainty from both subnetworks to identify and refine unreliable regions in labeled images. For unlabeled images, reliability-aware mutual pseudo-supervision (RMPS) regularization is designed to enable cross-supervision based on reliable pseudo-labels. Furthermore, feature difference learning (FDL) regularization is incorporated to promote prediction diversity across subnetworks. Experiments on two acute ischemic stroke datasets and the Left Atrium dataset demonstrate the effectiveness of the proposed RAML in semi-supervised segmentation tasks. The code for this project is available at https://github.com/EricMedimuist/RAML.

基于可靠性感知的半监督相互学习的急性缺血性卒中病灶分割。
对于急性缺血性脑卒中(AIS)患者,快速准确的病灶定位对于改善治疗效果至关重要。然而,由于缺乏大规模的带注释的数据集,自动脑卒中病灶分割仍然具有很大的挑战性。近年来,半监督学习(semi-supervised learning, SSL)在医学图像分割方面取得了显著进展,但其性能仍然受到不可靠伪标签的影响。为了解决这个问题,我们提出了一个新的SSL框架,称为可靠性感知相互学习(RAML),它使用两个子网,其中包含一个共享编码器、一个主解码器和一个辅助解码器。具体来说,RAML引入了不确定区域再学习(URR)正则化,它利用来自两个子网的预测不确定性来识别和改进标记图像中的不可靠区域。对于未标记的图像,设计了基于可靠伪标记的可靠性感知互伪监督(RMPS)正则化,实现交叉监督。在此基础上,引入特征差分学习(FDL)正则化,提高了预测在子网间的多样性。在两个急性缺血性卒中数据集和左心房数据集上的实验证明了该方法在半监督分割任务中的有效性。该项目的代码可从https://github.com/EricMedimuist/RAML获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信