Pioneering QSAR Modeling Study of FAP-Targeting Radiopharmaceuticals Used in Oncology.

IF 3.3
Dorrin Fatehi, Zahra Hajimahdi, Mona Mosayebnia
{"title":"Pioneering QSAR Modeling Study of FAP-Targeting Radiopharmaceuticals Used in Oncology.","authors":"Dorrin Fatehi, Zahra Hajimahdi, Mona Mosayebnia","doi":"10.1111/cbdd.70177","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast Activation Protein (FAP) is highly expressed in the tumor microenvironment, promoting cancer growth and spread. FAP inhibitors (FAPIs) labeled with radionuclides are increasingly used for cancer diagnosis and therapy. The present study aims to explore how structural features relate to the inhibitory action of radiopharmaceuticals, representing a novel approach in the field of radiopharmacy. The 2D-QSAR using multiple linear regression analysis via the stepwise variable selection method showed promising results for both internal and external predictive ability of the model (R<sup>2</sup> <sub>train</sub> = 0.877, Q<sup>2</sup> <sub>LOO</sub> = 0.830, pred_R<sup>2</sup> = 0.740). This analysis based on the genetic algorithm was also robust (R<sup>2</sup> <sub>train</sub> = 0.846, Q<sup>2</sup> <sub>LOO</sub> = 0.768, pred_R<sup>2</sup> = 0.608). A 3D-QSAR model using partial least squares analysis showed better parametric results for CoMFA descriptors (R<sup>2</sup> = 0.988, Q<sup>2</sup> <sub>LOO</sub> = 0.518 and pred_R<sup>2</sup> = 0.642) than the CoMSIA model as well. Our findings revealed that the steric, hydrophobic, and hydrogen-bonding properties notably impact the pIC<sub>50</sub> values of FAPI radiopharmaceuticals. Based on virtual screening on the FDA-approved drugs, 23 potential inhibitors of the FAP enzyme were identified. To the best of our knowledge, this is the first QSAR study on radiopharmaceuticals with FAP inhibitory action, the results of which can be helpful in designing more potent ones.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"106 4","pages":"e70177"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical biology & drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/cbdd.70177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblast Activation Protein (FAP) is highly expressed in the tumor microenvironment, promoting cancer growth and spread. FAP inhibitors (FAPIs) labeled with radionuclides are increasingly used for cancer diagnosis and therapy. The present study aims to explore how structural features relate to the inhibitory action of radiopharmaceuticals, representing a novel approach in the field of radiopharmacy. The 2D-QSAR using multiple linear regression analysis via the stepwise variable selection method showed promising results for both internal and external predictive ability of the model (R2 train = 0.877, Q2 LOO = 0.830, pred_R2 = 0.740). This analysis based on the genetic algorithm was also robust (R2 train = 0.846, Q2 LOO = 0.768, pred_R2 = 0.608). A 3D-QSAR model using partial least squares analysis showed better parametric results for CoMFA descriptors (R2 = 0.988, Q2 LOO = 0.518 and pred_R2 = 0.642) than the CoMSIA model as well. Our findings revealed that the steric, hydrophobic, and hydrogen-bonding properties notably impact the pIC50 values of FAPI radiopharmaceuticals. Based on virtual screening on the FDA-approved drugs, 23 potential inhibitors of the FAP enzyme were identified. To the best of our knowledge, this is the first QSAR study on radiopharmaceuticals with FAP inhibitory action, the results of which can be helpful in designing more potent ones.

肿瘤用fap靶向放射性药物的QSAR建模研究
成纤维细胞激活蛋白(FAP)在肿瘤微环境中高表达,促进肿瘤生长和扩散。放射性核素标记的FAP抑制剂(FAPIs)越来越多地用于癌症的诊断和治疗。本研究旨在探讨结构特征与放射性药物抑制作用的关系,代表了放射药理学领域的新方法。通过逐步变量选择法进行多元线性回归分析的2D-QSAR对模型的内部和外部预测能力均有良好的结果(R2 train = 0.877, Q2 LOO = 0.830, pred_R2 = 0.740)。基于遗传算法的分析同样具有鲁棒性(R2 train = 0.846, Q2 LOO = 0.768, pred_R2 = 0.608)。采用偏最小二乘分析的3D-QSAR模型对CoMFA描述符的参数化结果(R2 = 0.988, Q2 LOO = 0.518, pred_R2 = 0.642)也优于CoMSIA模型。我们的研究结果表明,空间、疏水和氢键性质显著影响FAPI放射性药物的pIC50值。基于对fda批准的药物的虚拟筛选,确定了23种潜在的FAP酶抑制剂。据我们所知,这是第一次对具有FAP抑制作用的放射性药物进行QSAR研究,其结果可以帮助设计更有效的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信