Rehab Salama, Eric Peet, Logan Morrione, Sarah Durant, Maxwell Seager, Madison Rennie, Suzanne Scarlata, Inna Nechipurenko
{"title":"Functional classification of GNAI1 disorder variants in C. elegans uncovers conserved and cell-specific mechanisms of dysfunction.","authors":"Rehab Salama, Eric Peet, Logan Morrione, Sarah Durant, Maxwell Seager, Madison Rennie, Suzanne Scarlata, Inna Nechipurenko","doi":"10.1093/genetics/iyaf216","DOIUrl":null,"url":null,"abstract":"<p><p>Heterotrimeric G proteins transduce signals from G protein coupled receptors, which mediate key aspects of neuronal development and function. Mutations in the GNAI1 gene, which encodes Gαi1, cause a disorder characterized by developmental delay, intellectual disability, hypotonia, and epilepsy. However, the mechanistic basis for this disorder remains unknown. Here, we show that GNAI1 is required for ciliogenesis in human cells and use C. elegans as a whole-organism model to determine the functional impact of seven GNAI1-disorder patient variants. Using CRISPR-Cas9 editing in combination with robust cellular (cilia morphology) and behavioral (chemotaxis) assays, we find that T48I, K272R, A328P, and V334E orthologous variants impact both cilia assembly and function in AWC neurons, M88V and I321T have no impact on either phenotype, and D175V exerts neuron-specific effects on cilia-dependent sensory behaviors. Finally, we validate in human ciliated cell lines that D173V, K270R, and A326P GNAI1 variants disrupt ciliary localization of the encoded human Gαi1 proteins similarly to their corresponding orthologous substitutions in the C. elegans ODR-3 (D175V, K272R, and A328P). Overall, our findings determine the in vivo effects of orthologous GNAI1 variants and contribute to mechanistic understanding of GNAI1 disorder pathogenesis as well as neuron-specific roles of ODR-3 in sensory biology.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf216","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterotrimeric G proteins transduce signals from G protein coupled receptors, which mediate key aspects of neuronal development and function. Mutations in the GNAI1 gene, which encodes Gαi1, cause a disorder characterized by developmental delay, intellectual disability, hypotonia, and epilepsy. However, the mechanistic basis for this disorder remains unknown. Here, we show that GNAI1 is required for ciliogenesis in human cells and use C. elegans as a whole-organism model to determine the functional impact of seven GNAI1-disorder patient variants. Using CRISPR-Cas9 editing in combination with robust cellular (cilia morphology) and behavioral (chemotaxis) assays, we find that T48I, K272R, A328P, and V334E orthologous variants impact both cilia assembly and function in AWC neurons, M88V and I321T have no impact on either phenotype, and D175V exerts neuron-specific effects on cilia-dependent sensory behaviors. Finally, we validate in human ciliated cell lines that D173V, K270R, and A326P GNAI1 variants disrupt ciliary localization of the encoded human Gαi1 proteins similarly to their corresponding orthologous substitutions in the C. elegans ODR-3 (D175V, K272R, and A328P). Overall, our findings determine the in vivo effects of orthologous GNAI1 variants and contribute to mechanistic understanding of GNAI1 disorder pathogenesis as well as neuron-specific roles of ODR-3 in sensory biology.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.