Dorian J Jackson, Da Peng, Sagarika A Shinde, Ankita Holenarasipura, Vidya Ajay, Patrick Cahan, Deborah J Andrew
{"title":"CrebA regulation of secretory capacity: Genome-wide transcription profiling coupled with in vivo DNA binding studies.","authors":"Dorian J Jackson, Da Peng, Sagarika A Shinde, Ankita Holenarasipura, Vidya Ajay, Patrick Cahan, Deborah J Andrew","doi":"10.1093/genetics/iyaf214","DOIUrl":null,"url":null,"abstract":"<p><p>DNA binding assays, expression analyses, and binding site mutagenesis revealed that the Drosophila CrebA transcription factor (TF) boosts secretory capacity in the embryonic salivary gland (SG) through direct regulation of secretory pathway component genes (SPCGs). The mammalian orthologues of CrebA, the Creb3L-family of leucine zipper TFs, not only activate SPCG expression in a variety of mammalian tissues but can also activate SPCG expression in Drosophila embryos, suggesting a highly conserved role for this family of proteins in boosting secretory capacity. However, in vivo assays reveal that CrebA binds far more genes than it regulates, and it remains unclear what distinguishes functional binding. It is also unclear if CrebA is the major factor driving SPCG gene expression in all Drosophila embryonic tissues and/or if CrebA also regulates other tissue-specific functions. Thus, we performed single cell RNA sequencing (scRNA-seq) of CrebA null embryos and compared to scRNA-seq data from existing WT samples to explore the relationship between CrebA binding and gene regulation. We find that CrebA binds the proximal promoters of its targets, that SPCGs are the major class of genes regulated by CrebA across tissues, and that CrebA is sufficient to activate SPCG expression even in cells that do not normally express the protein. A comparison of scRNA-Seq to other methods for capturing regulated transcripts reveals that the different methodologies identify overlapping but distinct sets of CrebA targets.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf214","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA binding assays, expression analyses, and binding site mutagenesis revealed that the Drosophila CrebA transcription factor (TF) boosts secretory capacity in the embryonic salivary gland (SG) through direct regulation of secretory pathway component genes (SPCGs). The mammalian orthologues of CrebA, the Creb3L-family of leucine zipper TFs, not only activate SPCG expression in a variety of mammalian tissues but can also activate SPCG expression in Drosophila embryos, suggesting a highly conserved role for this family of proteins in boosting secretory capacity. However, in vivo assays reveal that CrebA binds far more genes than it regulates, and it remains unclear what distinguishes functional binding. It is also unclear if CrebA is the major factor driving SPCG gene expression in all Drosophila embryonic tissues and/or if CrebA also regulates other tissue-specific functions. Thus, we performed single cell RNA sequencing (scRNA-seq) of CrebA null embryos and compared to scRNA-seq data from existing WT samples to explore the relationship between CrebA binding and gene regulation. We find that CrebA binds the proximal promoters of its targets, that SPCGs are the major class of genes regulated by CrebA across tissues, and that CrebA is sufficient to activate SPCG expression even in cells that do not normally express the protein. A comparison of scRNA-Seq to other methods for capturing regulated transcripts reveals that the different methodologies identify overlapping but distinct sets of CrebA targets.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.