Stephen Salerno, Emily K Roberts, Belinda L Needham, Tyler H McCormick, Fan Li, Bhramar Mukherjee, Xu Shi
{"title":"What's the Weight? Estimating Controlled Outcome Differences in Complex Surveys for Health Disparities Research.","authors":"Stephen Salerno, Emily K Roberts, Belinda L Needham, Tyler H McCormick, Fan Li, Bhramar Mukherjee, Xu Shi","doi":"10.1002/sim.70289","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we are motivated by the problem of estimating racial disparities in health outcomes, specifically the average controlled difference (ACD) in telomere length between Black and White individuals, using data from the National Health and Nutrition Examination Survey (NHANES). To do so, we build a propensity for race to properly adjust for other social determinants while characterizing the controlled effect of race on telomere length. Propensity score methods are broadly employed with observational data as a tool to achieve covariate balance, but how to implement them in complex surveys is less studied-in particular, when the survey weights depend on the group variable under comparison (as the NHANES sampling scheme depends on self-reported race). We propose identification formulas to properly estimate the ACD in outcomes between Black and White individuals, with appropriate weighting for both covariate imbalance across the two racial groups and generalizability. Via extensive simulation, we show that our proposed methods outperform traditional analytic approaches in terms of bias, mean squared error, and coverage when estimating the ACD for our setting of interest. In our data, we find that evidence of racial differences in telomere length between Black and White individuals attenuates after accounting for confounding by socioeconomic factors and utilizing appropriate propensity score and survey weighting techniques. Software to implement these methods and code to reproduce our results can be found in the R package svycdiff, available through the Comprehensive R Archive Network (CRAN) at cran.r-project.org/web/packages/svycdiff/, or in a development version on GitHub at github.com/salernos/svycdiff.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 23-24","pages":"e70289"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70289","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we are motivated by the problem of estimating racial disparities in health outcomes, specifically the average controlled difference (ACD) in telomere length between Black and White individuals, using data from the National Health and Nutrition Examination Survey (NHANES). To do so, we build a propensity for race to properly adjust for other social determinants while characterizing the controlled effect of race on telomere length. Propensity score methods are broadly employed with observational data as a tool to achieve covariate balance, but how to implement them in complex surveys is less studied-in particular, when the survey weights depend on the group variable under comparison (as the NHANES sampling scheme depends on self-reported race). We propose identification formulas to properly estimate the ACD in outcomes between Black and White individuals, with appropriate weighting for both covariate imbalance across the two racial groups and generalizability. Via extensive simulation, we show that our proposed methods outperform traditional analytic approaches in terms of bias, mean squared error, and coverage when estimating the ACD for our setting of interest. In our data, we find that evidence of racial differences in telomere length between Black and White individuals attenuates after accounting for confounding by socioeconomic factors and utilizing appropriate propensity score and survey weighting techniques. Software to implement these methods and code to reproduce our results can be found in the R package svycdiff, available through the Comprehensive R Archive Network (CRAN) at cran.r-project.org/web/packages/svycdiff/, or in a development version on GitHub at github.com/salernos/svycdiff.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.