Constraint based modeling of drug induced metabolic changes in a cancer cell line.

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xavier Benedicto, Åsmund Flobak, Miguel Ponce-de-Leon, Alfonso Valencia
{"title":"Constraint based modeling of drug induced metabolic changes in a cancer cell line.","authors":"Xavier Benedicto, Åsmund Flobak, Miguel Ponce-de-Leon, Alfonso Valencia","doi":"10.1038/s41540-025-00586-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells frequently reprogramme their metabolism to support growth and survival, making metabolic pathways attractive targets for therapy. In this study, we investigated the metabolic effects of three kinase inhibitors and their synergistic combinations in the gastric cancer cell line AGS using genome-scale metabolic models and transcriptomic profiling. We applied the tasks inferred from the differential expression (TIDE) algorithm to infer pathway activity changes in the different conditions. We also explored a variant of TIDE that uses task-essential genes to infer metabolic task changes, providing a complementary perspective to the original algorithm. Our results revealed widespread down-regulation of biosynthetic pathways, particularly in amino acid and nucleotide metabolism. Combinatorial treatments induced condition-specific metabolic alterations, including strong synergistic effects in the PI3Ki-MEKi condition affecting ornithine and polyamine biosynthesis. These metabolic shifts provide insight into drug synergy mechanisms and highlight potential therapeutic vulnerabilities. To support reproducibility, we developed an open-source Python package, MTEApy, implementing both TIDE frameworks.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"111"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00586-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer cells frequently reprogramme their metabolism to support growth and survival, making metabolic pathways attractive targets for therapy. In this study, we investigated the metabolic effects of three kinase inhibitors and their synergistic combinations in the gastric cancer cell line AGS using genome-scale metabolic models and transcriptomic profiling. We applied the tasks inferred from the differential expression (TIDE) algorithm to infer pathway activity changes in the different conditions. We also explored a variant of TIDE that uses task-essential genes to infer metabolic task changes, providing a complementary perspective to the original algorithm. Our results revealed widespread down-regulation of biosynthetic pathways, particularly in amino acid and nucleotide metabolism. Combinatorial treatments induced condition-specific metabolic alterations, including strong synergistic effects in the PI3Ki-MEKi condition affecting ornithine and polyamine biosynthesis. These metabolic shifts provide insight into drug synergy mechanisms and highlight potential therapeutic vulnerabilities. To support reproducibility, we developed an open-source Python package, MTEApy, implementing both TIDE frameworks.

基于约束的癌症细胞系药物诱导代谢变化建模。
癌细胞经常重新编程其代谢以支持生长和生存,使代谢途径成为治疗的有吸引力的靶点。在这项研究中,我们利用基因组尺度的代谢模型和转录组学分析研究了三种激酶抑制剂及其协同组合在胃癌细胞系AGS中的代谢作用。我们应用从差分表达(TIDE)算法推断的任务来推断不同条件下通路活性的变化。我们还探索了TIDE的一种变体,该变体使用任务必需基因来推断代谢任务的变化,为原始算法提供了补充视角。我们的研究结果揭示了广泛下调的生物合成途径,特别是在氨基酸和核苷酸代谢。组合治疗诱导了疾病特异性代谢改变,包括PI3Ki-MEKi条件下影响鸟氨酸和多胺生物合成的强协同效应。这些代谢变化提供了对药物协同机制的深入了解,并突出了潜在的治疗脆弱性。为了支持再现性,我们开发了一个开源Python包MTEApy,实现了两个TIDE框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信