Luke Stevens , Nan Kennedy , Rob J. Taylor , Adam Lewis , Frank E. Harrell Jr , Matthew S. Shotwell , Emily S. Serdoz , Gordon R. Bernard , Wesley H. Self , Christopher J. Lindsell , Paul A. Harris , Jonathan D. Casey
{"title":"A REDCap advanced randomization module to meet the needs of modern trials","authors":"Luke Stevens , Nan Kennedy , Rob J. Taylor , Adam Lewis , Frank E. Harrell Jr , Matthew S. Shotwell , Emily S. Serdoz , Gordon R. Bernard , Wesley H. Self , Christopher J. Lindsell , Paul A. Harris , Jonathan D. Casey","doi":"10.1016/j.jbi.2025.104925","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Since 2012, the electronic data capture platform REDCap has included an embedded randomization module allowing a single randomization per study record with the ability to stratify by variables such as study site and participant sex at birth. In recent years, platform, adaptive, decentralized, and pragmatic trials have gained popularity. These trial designs often require approaches to randomization not supported by the original REDCap randomization module, including randomizing patients into multiple domains or at multiple points in time, changing allocation tables to add or drop study groups, or adaptively changing allocation ratios based on data from previously enrolled participants. Our team aimed to develop new randomization functions to address these issues.</div></div><div><h3>Methods</h3><div>A collaborative process facilitated by the NIH-funded Trial Innovation Network was initiated to modernize the randomization module in REDCap, incorporating feedback from clinical trialists, biostatisticians, technologists, and other experts.</div></div><div><h3>Results</h3><div>This effort led to the development of an advanced randomization module within the REDCap platform. In addition to supporting platform, adaptive, decentralized, and pragmatic trials, the new module introduces several new features, such as improved support for blinded randomization, additional randomization metadata capture (e.g., user identity and timestamp), additional tools allowing REDCap administrators to support investigators using the randomization module, and the ability for clinicians participating in pragmatic or decentralized trials to perform randomization through a survey without needing log-in access to the study database. As of June 19, 2025, multiple randomizations have been used in 211 projects from 55 institutions, randomizations with real-time trigger logic in 108 projects from 64 institutions, and blinded group allocation in 24 projects from 17 institutions.</div></div><div><h3>Conclusion</h3><div>The new randomization module aims to streamline the randomization process, improve trial efficiency, and ensure robust data integrity, thereby supporting the conduct of more sophisticated and adaptive clinical trials.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"171 ","pages":"Article 104925"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425001546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Since 2012, the electronic data capture platform REDCap has included an embedded randomization module allowing a single randomization per study record with the ability to stratify by variables such as study site and participant sex at birth. In recent years, platform, adaptive, decentralized, and pragmatic trials have gained popularity. These trial designs often require approaches to randomization not supported by the original REDCap randomization module, including randomizing patients into multiple domains or at multiple points in time, changing allocation tables to add or drop study groups, or adaptively changing allocation ratios based on data from previously enrolled participants. Our team aimed to develop new randomization functions to address these issues.
Methods
A collaborative process facilitated by the NIH-funded Trial Innovation Network was initiated to modernize the randomization module in REDCap, incorporating feedback from clinical trialists, biostatisticians, technologists, and other experts.
Results
This effort led to the development of an advanced randomization module within the REDCap platform. In addition to supporting platform, adaptive, decentralized, and pragmatic trials, the new module introduces several new features, such as improved support for blinded randomization, additional randomization metadata capture (e.g., user identity and timestamp), additional tools allowing REDCap administrators to support investigators using the randomization module, and the ability for clinicians participating in pragmatic or decentralized trials to perform randomization through a survey without needing log-in access to the study database. As of June 19, 2025, multiple randomizations have been used in 211 projects from 55 institutions, randomizations with real-time trigger logic in 108 projects from 64 institutions, and blinded group allocation in 24 projects from 17 institutions.
Conclusion
The new randomization module aims to streamline the randomization process, improve trial efficiency, and ensure robust data integrity, thereby supporting the conduct of more sophisticated and adaptive clinical trials.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.