{"title":"Distributed subthreshold representation of sharp wave-ripples by hilar mossy cells.","authors":"Ayako Ouchi, Taro Toyoizumi, Nobuyoshi Matsumoto, Yuji Ikegaya","doi":"10.7554/eLife.97270","DOIUrl":null,"url":null,"abstract":"<p><p>In neural information processing, the nervous system transmits neuronal activity between layers of neural circuits, occasionally passing through small layers composed only of sparse neurons. Hippocampal hilar mossy cells (MCs) constitute such a typical bottleneck layer. However, how efficient information encoding is achieved within such constrained layers remains poorly understood. To address this, we focused on sharp wave-ripples (SWRs) - synchronous neural events originating in the CA3 region - and investigated functional diversity within MC populations using in vivo/in vitro patch-clamp recordings in mice. By combining machine learning algorithms, we developed a model to predict CA3 SWR waveforms based on the synaptic response waveforms of MCs, suggesting that SWR-related information is indeed encoded in their subthreshold activity. While individual MCs were generally associated with specific SWR clusters, partial overlap across some MCs was also observed, indicating that CA3 activity is distributed across the MC population. Our findings suggest that CA3 SWR activity is represented in a pseudo-orthogonal manner across MC populations, allowing the small MC layer to effectively compress and relay hippocampal information.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503485/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.97270","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In neural information processing, the nervous system transmits neuronal activity between layers of neural circuits, occasionally passing through small layers composed only of sparse neurons. Hippocampal hilar mossy cells (MCs) constitute such a typical bottleneck layer. However, how efficient information encoding is achieved within such constrained layers remains poorly understood. To address this, we focused on sharp wave-ripples (SWRs) - synchronous neural events originating in the CA3 region - and investigated functional diversity within MC populations using in vivo/in vitro patch-clamp recordings in mice. By combining machine learning algorithms, we developed a model to predict CA3 SWR waveforms based on the synaptic response waveforms of MCs, suggesting that SWR-related information is indeed encoded in their subthreshold activity. While individual MCs were generally associated with specific SWR clusters, partial overlap across some MCs was also observed, indicating that CA3 activity is distributed across the MC population. Our findings suggest that CA3 SWR activity is represented in a pseudo-orthogonal manner across MC populations, allowing the small MC layer to effectively compress and relay hippocampal information.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.