Shuangmin Wang, Jiaojiao Shu, Nuoxin Wang, Zhixu He
{"title":"Exosomal non-coding RNAs: mediators of crosstalk between cancer and cancer stem cells.","authors":"Shuangmin Wang, Jiaojiao Shu, Nuoxin Wang, Zhixu He","doi":"10.1038/s41420-025-02726-z","DOIUrl":null,"url":null,"abstract":"<p><p>Current advances in oncology have recognized two distinct cell subpopulations in tumors that include (1) a rare subpopulation, cancer stem cells (CSCs), which is considered to be the \"seed\" of the tumor, with therapy-resistant properties and as key drivers of tumor aggressiveness, and (2) the remaining bulk one, non-CSCs, all differentiated from the CSCs. Within the tumor microenvironment (TME), exosomes secreted by either CSCs or non-CSCs, containing multiple biomolecular cargos, mediate communication between both of the tumor cell subpopulations and play a vital role in promoting tumor progression. Specifically, a class of biomolecular cargo, non-coding RNAs (ncRNAs) that do not code for proteins during translation, has recently been highlighted to be a key participant in oncobiological processes. To comprehensively illuminate the mechanism of exosomal ncRNAs in mediating bidirectional communication between CSCs and differentiated tumor cells within the TME, we systematically analyzed the state-of-the-art literature from PubMed on this topic. It is revealed that: (1) Non-CSC exosomal ncRNAs enhance CSC stemness via upregulating stemness marker expression and activating stemness-reinforcing signaling pathways; (2) CSC-derived exosomal ncRNAs reciprocally mediate tumor progression by enhancing stemness, metastasis, angiogenesis, chemoresistance, and immune suppression of non-CSCs; (3) These tumor-derived exosomal ncRNAs possess the potentials as liquid biopsy biomarkers for early metastasis detection, and treatment targets or drug delivery systems for precision cancer therapy. It is therefore concluded that exosomal ncRNAs serve as critical communication bridges within TME, creating a self-reinforcing tumor-promoting loop, and therapeutically targeting exosomal ncRNAs could disrupt the crosstalk between CSCs and non-CSCs to delay the tumor progression. These findings provide a framework for developing combinatorial strategies against therapy-resistant malignancies.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"434"},"PeriodicalIF":7.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02726-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current advances in oncology have recognized two distinct cell subpopulations in tumors that include (1) a rare subpopulation, cancer stem cells (CSCs), which is considered to be the "seed" of the tumor, with therapy-resistant properties and as key drivers of tumor aggressiveness, and (2) the remaining bulk one, non-CSCs, all differentiated from the CSCs. Within the tumor microenvironment (TME), exosomes secreted by either CSCs or non-CSCs, containing multiple biomolecular cargos, mediate communication between both of the tumor cell subpopulations and play a vital role in promoting tumor progression. Specifically, a class of biomolecular cargo, non-coding RNAs (ncRNAs) that do not code for proteins during translation, has recently been highlighted to be a key participant in oncobiological processes. To comprehensively illuminate the mechanism of exosomal ncRNAs in mediating bidirectional communication between CSCs and differentiated tumor cells within the TME, we systematically analyzed the state-of-the-art literature from PubMed on this topic. It is revealed that: (1) Non-CSC exosomal ncRNAs enhance CSC stemness via upregulating stemness marker expression and activating stemness-reinforcing signaling pathways; (2) CSC-derived exosomal ncRNAs reciprocally mediate tumor progression by enhancing stemness, metastasis, angiogenesis, chemoresistance, and immune suppression of non-CSCs; (3) These tumor-derived exosomal ncRNAs possess the potentials as liquid biopsy biomarkers for early metastasis detection, and treatment targets or drug delivery systems for precision cancer therapy. It is therefore concluded that exosomal ncRNAs serve as critical communication bridges within TME, creating a self-reinforcing tumor-promoting loop, and therapeutically targeting exosomal ncRNAs could disrupt the crosstalk between CSCs and non-CSCs to delay the tumor progression. These findings provide a framework for developing combinatorial strategies against therapy-resistant malignancies.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.