Network based simultaneous embedding of cells and marker genes from scRNA-seq studies.

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Namrata Bhattacharya, Swagatam Chakraborti, Stuti Kumari, Bernadette Mathew, Abhishek Halder, Sakshi Gujral, Krishan Gupta, Aayushi Mittal, Debajyoti Sinha, Colleen Nelson, Tanmoy Chakraborty, Gaurav Ahuja, Debarka Sengupta
{"title":"Network based simultaneous embedding of cells and marker genes from scRNA-seq studies.","authors":"Namrata Bhattacharya, Swagatam Chakraborti, Stuti Kumari, Bernadette Mathew, Abhishek Halder, Sakshi Gujral, Krishan Gupta, Aayushi Mittal, Debajyoti Sinha, Colleen Nelson, Tanmoy Chakraborty, Gaurav Ahuja, Debarka Sengupta","doi":"10.1093/bib/bbaf537","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of scRNA-sequencing datasets highlights the urgent need for enhanced clustering and visualization methods. Here, we propose Stardust, an iterative, force-directed graph layout algorithm that enables the simultaneous embedding of cells and marker genes. Stardust, for the first time, allows a single-stop visualization of cells and marker genes on a single 2D map. While Stardust provides its own visualization pipeline, it can be plugged in with state-of-the-art methods such as Uniform Manifold Approximation and Projection (UMAP) and t-Distributed Stochastic Neighbor Embedding (t-SNE). We benchmarked Stardust against popular visualization and clustering tools on both scRNA-seq and spatial transcriptomics datasets. In all cases, Stardust performs competitively in identifying and visualizing cell types in an accurate and spatially coherent manner.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf537","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of scRNA-sequencing datasets highlights the urgent need for enhanced clustering and visualization methods. Here, we propose Stardust, an iterative, force-directed graph layout algorithm that enables the simultaneous embedding of cells and marker genes. Stardust, for the first time, allows a single-stop visualization of cells and marker genes on a single 2D map. While Stardust provides its own visualization pipeline, it can be plugged in with state-of-the-art methods such as Uniform Manifold Approximation and Projection (UMAP) and t-Distributed Stochastic Neighbor Embedding (t-SNE). We benchmarked Stardust against popular visualization and clustering tools on both scRNA-seq and spatial transcriptomics datasets. In all cases, Stardust performs competitively in identifying and visualizing cell types in an accurate and spatially coherent manner.

基于网络的scRNA-seq研究中细胞和标记基因的同时嵌入。
scrna测序数据集的复杂性凸显了对增强聚类和可视化方法的迫切需要。在这里,我们提出了Stardust,这是一种迭代的、力导向的图形布局算法,可以同时嵌入细胞和标记基因。Stardust首次允许在一张2D地图上对细胞和标记基因进行单站可视化。虽然Stardust提供了自己的可视化管道,但它可以插入最先进的方法,如均匀流形逼近和投影(UMAP)和t分布随机邻居嵌入(t-SNE)。在scRNA-seq和空间转录组学数据集上,我们将Stardust与流行的可视化和聚类工具进行了基准测试。在所有情况下,“星尘”在识别和可视化细胞类型方面都表现得很有竞争力,而且精确且空间连贯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信