Lucas W Mendelson, Alexander P Mueller, Jeremy Vasquez, Steven D Brown, R Adam Thompson
{"title":"Modifying Methylene-Tetrahydrofolate Reductase to Disrupt Electron Bifurcation in Clostridium autoethanogenum.","authors":"Lucas W Mendelson, Alexander P Mueller, Jeremy Vasquez, Steven D Brown, R Adam Thompson","doi":"10.1002/biot.70133","DOIUrl":null,"url":null,"abstract":"<p><p>Methylene-tetrahydrofolate reductase (MTHFR) is an important enzyme for acetogenic carbon fixation, but the redox mechanism driving this reaction is not clearly understood. Previous enzymology work and energetic accounting on species such as Clostridium autoethanogenum has led to confounding results when placed in the context of in vivo experiments. In this work, we create multiple C. autoethanogenum strains harboring alternative MTHFR enzyme complexes as well as genome-scale metabolic models to better understand how these organisms conserve energy on gas substrates. The inclusion of a Type-III MTHFR unexpectedly allows for higher growth than expected and suggests the possibility of an additional redox balancing cycle employed during autotrophic growth.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 10","pages":"e70133"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/biot.70133","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Methylene-tetrahydrofolate reductase (MTHFR) is an important enzyme for acetogenic carbon fixation, but the redox mechanism driving this reaction is not clearly understood. Previous enzymology work and energetic accounting on species such as Clostridium autoethanogenum has led to confounding results when placed in the context of in vivo experiments. In this work, we create multiple C. autoethanogenum strains harboring alternative MTHFR enzyme complexes as well as genome-scale metabolic models to better understand how these organisms conserve energy on gas substrates. The inclusion of a Type-III MTHFR unexpectedly allows for higher growth than expected and suggests the possibility of an additional redox balancing cycle employed during autotrophic growth.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.