Lynn Mes, Jennifer Veth, Julie Van Coillie, Jim B. D. Keijser, Elise Mantel, Richard van der Mast, Theo Rispens, Gestur Vidarsson, Marjolein van Egmond, Jeroen den Dunnen, Hung-Jen Chen
{"title":"Anti-SARS-CoV-2 Spike IgA2 Induces Inflammation by Human Macrophages","authors":"Lynn Mes, Jennifer Veth, Julie Van Coillie, Jim B. D. Keijser, Elise Mantel, Richard van der Mast, Theo Rispens, Gestur Vidarsson, Marjolein van Egmond, Jeroen den Dunnen, Hung-Jen Chen","doi":"10.1002/eji.70068","DOIUrl":null,"url":null,"abstract":"<p>Severe COVID-19 is an immunological disorder characterized by a hyper-inflammatory reaction of the immune system. SARS-CoV-2 anti-spike antibodies of the IgG isotype are known to strongly contribute to this hyperinflammation by overactivation of alveolar macrophages. However, while the pathogenic function of IgG has been extensively studied, very little is known about the function of IgA, the most abundant immunoglobulin isotype in the airways. Although IgA is generally considered noninflammatory, in this study, we show that anti-spike IgA induces pronounced proinflammatory responses. We demonstrate that stimulation of macrophages with anti-spike IgA immune complexes in combination with a viral stimulus amplifies proinflammatory cytokine production. This IgA-induced inflammation is particularly driven by IgA2, the IgA subclass that is increased in the plasma of severely ill COVID-19 patients. We identified that IgA2-induced inflammation is predominantly dependent on FcαRI-Syk signaling. Mechanistically, IgA2-induced inflammation is linked to enhanced glycolysis and altered mitochondrial function, indicating subclass-specific immunometabolic reprogramming. Taken together, these data indicate a pathogenic role for IgA2 in severe COVID-19 and highlight its signaling cascades and metabolic pathways as potential druggable targets to counteract hyperinflammation in severe coronavirus infections, such as COVID-19, SARS, MERS, and potential future outbreaks.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.70068","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe COVID-19 is an immunological disorder characterized by a hyper-inflammatory reaction of the immune system. SARS-CoV-2 anti-spike antibodies of the IgG isotype are known to strongly contribute to this hyperinflammation by overactivation of alveolar macrophages. However, while the pathogenic function of IgG has been extensively studied, very little is known about the function of IgA, the most abundant immunoglobulin isotype in the airways. Although IgA is generally considered noninflammatory, in this study, we show that anti-spike IgA induces pronounced proinflammatory responses. We demonstrate that stimulation of macrophages with anti-spike IgA immune complexes in combination with a viral stimulus amplifies proinflammatory cytokine production. This IgA-induced inflammation is particularly driven by IgA2, the IgA subclass that is increased in the plasma of severely ill COVID-19 patients. We identified that IgA2-induced inflammation is predominantly dependent on FcαRI-Syk signaling. Mechanistically, IgA2-induced inflammation is linked to enhanced glycolysis and altered mitochondrial function, indicating subclass-specific immunometabolic reprogramming. Taken together, these data indicate a pathogenic role for IgA2 in severe COVID-19 and highlight its signaling cascades and metabolic pathways as potential druggable targets to counteract hyperinflammation in severe coronavirus infections, such as COVID-19, SARS, MERS, and potential future outbreaks.
期刊介绍:
The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.