Generative design of functional organic molecules for terahertz radiation detection

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zsuzsanna Koczor-Benda, Shayantan Chaudhuri, Joe Gilkes, Francesco Bartucca, Liming Li and Reinhard J. Maurer
{"title":"Generative design of functional organic molecules for terahertz radiation detection","authors":"Zsuzsanna Koczor-Benda, Shayantan Chaudhuri, Joe Gilkes, Francesco Bartucca, Liming Li and Reinhard J. Maurer","doi":"10.1039/D5DD00106D","DOIUrl":null,"url":null,"abstract":"<p >Plasmonic nanocavities are molecule-nanoparticle junctions that offer a promising approach to upconvert terahertz radiation into visible or near-infrared light, enabling nanoscale detection at room temperature. However, the identification of molecules with strong terahertz-to-visible frequency upconversion efficiency is limited by the availability of suitable compounds in commercial databases. Here, we employ the generative autoregressive deep neural network, G-SchNet, to perform property-driven design of novel monothiolated molecules tailored for terahertz radiation detection. To design functional organic molecules, we iteratively bias G-SchNet to drive molecular generation towards highly active and synthesizable molecules based on machine learning-based property predictors, including molecular fingerprints and state-of-the-art neural networks. We study the reliability of these property predictors for generated molecules and analyze the chemical space and properties of generated molecules to identify trends in activity. Finally, we filter generated molecules and plan retrosynthetic routes from commercially available reactants to identify promising novel compounds and their most active vibrational modes in terahertz-to-visible upconversion.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2852-2863"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00106d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00106d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic nanocavities are molecule-nanoparticle junctions that offer a promising approach to upconvert terahertz radiation into visible or near-infrared light, enabling nanoscale detection at room temperature. However, the identification of molecules with strong terahertz-to-visible frequency upconversion efficiency is limited by the availability of suitable compounds in commercial databases. Here, we employ the generative autoregressive deep neural network, G-SchNet, to perform property-driven design of novel monothiolated molecules tailored for terahertz radiation detection. To design functional organic molecules, we iteratively bias G-SchNet to drive molecular generation towards highly active and synthesizable molecules based on machine learning-based property predictors, including molecular fingerprints and state-of-the-art neural networks. We study the reliability of these property predictors for generated molecules and analyze the chemical space and properties of generated molecules to identify trends in activity. Finally, we filter generated molecules and plan retrosynthetic routes from commercially available reactants to identify promising novel compounds and their most active vibrational modes in terahertz-to-visible upconversion.

Abstract Image

用于太赫兹辐射探测的功能性有机分子生成设计
等离子体纳米腔是一种分子-纳米粒子连接点,它提供了一种很有前途的方法,将太赫兹辐射上转换为可见光或近红外光,使室温下的纳米级检测成为可能。然而,识别具有强太赫兹到可见光频率上转换效率的分子受到商业数据库中合适化合物的可用性的限制。在这里,我们采用生成式自回归深度神经网络G-SchNet来执行专为太赫兹辐射检测量身定制的新型单硫代分子的属性驱动设计。为了设计功能性有机分子,我们迭代地偏向G-SchNet,以基于机器学习的属性预测因子(包括分子指纹和最先进的神经网络)推动分子生成向高活性和可合成的分子方向发展。我们研究了生成分子的这些性质预测的可靠性,并分析了生成分子的化学空间和性质,以确定活性的趋势。最后,我们对生成的分子进行过滤,并从市售反应物中规划反合成路线,以确定有希望的新化合物及其在太赫兹到可见光上转换中最活跃的振动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信