Integrating mechanistic modelling with Bayesian optimisation: accelerated self-driving laboratories for RAFT polymerisation

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Clarissa. Y. P. Wilding, Richard. A. Bourne and Nicholas. J. Warren
{"title":"Integrating mechanistic modelling with Bayesian optimisation: accelerated self-driving laboratories for RAFT polymerisation","authors":"Clarissa. Y. P. Wilding, Richard. A. Bourne and Nicholas. J. Warren","doi":"10.1039/D5DD00258C","DOIUrl":null,"url":null,"abstract":"<p >Discovery of sustainable, high-performing materials on timescales to meet societal needs is only going to be achieved with the assistance of artificial intelligence and machine learning. Herein, a Bayesian optimisation algorithm is trained using <em>in silico</em> reactions facilitated by a new mechanistic model for reversible addition fragmentation chain transfer polymerisation (RAFT). This subsequently informs experimental multi-objective self-optimisation of RAFT polymerisation using an automated polymerisation platform capable of measuring the critical algorithm objectives (monomer conversion and molecular weight distribution) online. The platform autonomously identifies the Pareto-front representing the trade-off between monomer conversion and molar mass dispersity with a reduced number of reactions compared to the equivalent fully experimental optimisation process. This model-informed AI approach provides opportunities for much more sustainable and efficient discovery of polymeric materials and provides a benchmark for other complex chemical systems.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2797-2803"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00258c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00258c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery of sustainable, high-performing materials on timescales to meet societal needs is only going to be achieved with the assistance of artificial intelligence and machine learning. Herein, a Bayesian optimisation algorithm is trained using in silico reactions facilitated by a new mechanistic model for reversible addition fragmentation chain transfer polymerisation (RAFT). This subsequently informs experimental multi-objective self-optimisation of RAFT polymerisation using an automated polymerisation platform capable of measuring the critical algorithm objectives (monomer conversion and molecular weight distribution) online. The platform autonomously identifies the Pareto-front representing the trade-off between monomer conversion and molar mass dispersity with a reduced number of reactions compared to the equivalent fully experimental optimisation process. This model-informed AI approach provides opportunities for much more sustainable and efficient discovery of polymeric materials and provides a benchmark for other complex chemical systems.

Abstract Image

整合机制建模与贝叶斯优化:加速自动驾驶实验室RAFT聚合
只有在人工智能和机器学习的帮助下,才能在时间尺度上发现可持续的高性能材料,以满足社会需求。本文采用一种新的可逆加成断裂链转移聚合(RAFT)机理模型,利用硅反应训练贝叶斯优化算法。随后,使用能够在线测量关键算法目标(单体转化和分子量分布)的自动聚合平台,通知RAFT聚合的实验多目标自优化。与等效的完全实验优化过程相比,该平台自主识别了代表单体转化和摩尔质量分散之间权衡的帕累托前沿,减少了反应次数。这种基于模型的人工智能方法为更可持续、更有效地发现聚合物材料提供了机会,并为其他复杂的化学系统提供了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信