Clarissa. Y. P. Wilding, Richard. A. Bourne and Nicholas. J. Warren
{"title":"Integrating mechanistic modelling with Bayesian optimisation: accelerated self-driving laboratories for RAFT polymerisation","authors":"Clarissa. Y. P. Wilding, Richard. A. Bourne and Nicholas. J. Warren","doi":"10.1039/D5DD00258C","DOIUrl":null,"url":null,"abstract":"<p >Discovery of sustainable, high-performing materials on timescales to meet societal needs is only going to be achieved with the assistance of artificial intelligence and machine learning. Herein, a Bayesian optimisation algorithm is trained using <em>in silico</em> reactions facilitated by a new mechanistic model for reversible addition fragmentation chain transfer polymerisation (RAFT). This subsequently informs experimental multi-objective self-optimisation of RAFT polymerisation using an automated polymerisation platform capable of measuring the critical algorithm objectives (monomer conversion and molecular weight distribution) online. The platform autonomously identifies the Pareto-front representing the trade-off between monomer conversion and molar mass dispersity with a reduced number of reactions compared to the equivalent fully experimental optimisation process. This model-informed AI approach provides opportunities for much more sustainable and efficient discovery of polymeric materials and provides a benchmark for other complex chemical systems.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2797-2803"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00258c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00258c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Discovery of sustainable, high-performing materials on timescales to meet societal needs is only going to be achieved with the assistance of artificial intelligence and machine learning. Herein, a Bayesian optimisation algorithm is trained using in silico reactions facilitated by a new mechanistic model for reversible addition fragmentation chain transfer polymerisation (RAFT). This subsequently informs experimental multi-objective self-optimisation of RAFT polymerisation using an automated polymerisation platform capable of measuring the critical algorithm objectives (monomer conversion and molecular weight distribution) online. The platform autonomously identifies the Pareto-front representing the trade-off between monomer conversion and molar mass dispersity with a reduced number of reactions compared to the equivalent fully experimental optimisation process. This model-informed AI approach provides opportunities for much more sustainable and efficient discovery of polymeric materials and provides a benchmark for other complex chemical systems.