Quantum machine learning of molecular energies with hybrid quantum-neural wavefunction†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weitang Li, Shi-Xin Zhang, Zirui Sheng, Cunxi Gong, Jianpeng Chen and Zhigang Shuai
{"title":"Quantum machine learning of molecular energies with hybrid quantum-neural wavefunction†","authors":"Weitang Li, Shi-Xin Zhang, Zirui Sheng, Cunxi Gong, Jianpeng Chen and Zhigang Shuai","doi":"10.1039/D5DD00222B","DOIUrl":null,"url":null,"abstract":"<p >Quantum computational chemistry holds great promise for simulating molecular systems more efficiently than classical methods by leveraging quantum bits to represent molecular wavefunctions. However, current implementations face significant limitations in accuracy due to hardware noise and algorithmic constraints. To overcome these challenges, we introduce a hybrid framework that learns molecular wavefunction using a combination of an efficient quantum circuit and a neural network. Numerical benchmarking on molecular systems shows that our hybrid quantum-neural wavefunction approach achieves near-chemical accuracy, comparable to advanced quantum and classical techniques. Based on the isomerization reaction of cyclobutadiene, a challenging multi-reference model, our approach is further validated on a superconducting quantum computer with high accuracy and significant resilience to noise.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2697-2710"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00222b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00222b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computational chemistry holds great promise for simulating molecular systems more efficiently than classical methods by leveraging quantum bits to represent molecular wavefunctions. However, current implementations face significant limitations in accuracy due to hardware noise and algorithmic constraints. To overcome these challenges, we introduce a hybrid framework that learns molecular wavefunction using a combination of an efficient quantum circuit and a neural network. Numerical benchmarking on molecular systems shows that our hybrid quantum-neural wavefunction approach achieves near-chemical accuracy, comparable to advanced quantum and classical techniques. Based on the isomerization reaction of cyclobutadiene, a challenging multi-reference model, our approach is further validated on a superconducting quantum computer with high accuracy and significant resilience to noise.

Abstract Image

基于混合量子神经波函数的分子能量量子机器学习
量子计算化学利用量子比特来表示分子波函数,比传统方法更有效地模拟分子系统。然而,由于硬件噪声和算法的限制,目前的实现在精度上面临着很大的限制。为了克服这些挑战,我们引入了一种混合框架,该框架使用高效量子电路和神经网络的组合来学习分子波函数。分子系统的数值基准测试表明,我们的混合量子神经波函数方法达到了接近化学的精度,可与先进的量子和经典技术相媲美。基于环丁二烯异构化反应这一具有挑战性的多参考模型,我们的方法在超导量子计算机上进一步验证,具有高精度和显著的抗噪声弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信