Beyond training data: how elemental features enhance ML-based formation energy predictions

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hamed Mahdavi, Vasant Honavar and Dane Morgan
{"title":"Beyond training data: how elemental features enhance ML-based formation energy predictions","authors":"Hamed Mahdavi, Vasant Honavar and Dane Morgan","doi":"10.1039/D5DD00182J","DOIUrl":null,"url":null,"abstract":"<p >Quantum mechanics (QM) based modeling allows for accurate prediction of molecular and atomic interactions, enabling simulations of many materials and chemical properties. However, the high computational cost of QM models leads to a need for faster computational methods to study atomic-scale interactions. Graph Neural Networks fit to QM calculations have been used as a computationally efficient alternative to QM. Still, generalization to diverse unseen compounds is challenging due to the many possible chemistries and structures. In this work, we demonstrate the effectiveness of utilizing element features in facilitating generalization to compounds containing completely new elements in the dataset. Our findings show that we can even randomly exclude up to ten percent of the elements from the dataset without significantly compromising the model's performance.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2972-2982"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00182j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00182j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum mechanics (QM) based modeling allows for accurate prediction of molecular and atomic interactions, enabling simulations of many materials and chemical properties. However, the high computational cost of QM models leads to a need for faster computational methods to study atomic-scale interactions. Graph Neural Networks fit to QM calculations have been used as a computationally efficient alternative to QM. Still, generalization to diverse unseen compounds is challenging due to the many possible chemistries and structures. In this work, we demonstrate the effectiveness of utilizing element features in facilitating generalization to compounds containing completely new elements in the dataset. Our findings show that we can even randomly exclude up to ten percent of the elements from the dataset without significantly compromising the model's performance.

Abstract Image

超越训练数据:元素特征如何增强基于ml的地层能量预测
基于量子力学(QM)的建模可以准确预测分子和原子的相互作用,从而模拟许多材料和化学性质。然而,量子力学模型的高计算成本导致需要更快的计算方法来研究原子尺度的相互作用。适合QM计算的图神经网络已被用作QM计算效率的替代方案。然而,由于有许多可能的化学和结构,将各种看不见的化合物推广是具有挑战性的。在这项工作中,我们证明了利用元素特征促进对数据集中包含全新元素的化合物的泛化的有效性。我们的研究结果表明,我们甚至可以从数据集中随机排除多达10%的元素,而不会显著影响模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信