A small-sample cross-domain bearing fault diagnosis method based on knowledge-enhanced domain adversarial learning

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Peiming Shi , Yan Zhao , Xuefang Xu , Dongying Han
{"title":"A small-sample cross-domain bearing fault diagnosis method based on knowledge-enhanced domain adversarial learning","authors":"Peiming Shi ,&nbsp;Yan Zhao ,&nbsp;Xuefang Xu ,&nbsp;Dongying Han","doi":"10.1016/j.neucom.2025.131699","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional domain adaptation methods often perform poorly in cross-device bearing fault diagnosis when the target domain contains incomplete labels or exhibits imbalanced data. To address this issue, we propose an Adaptive meta-domain transfer learning network (AMTLN), which integrates a self-weighted fusion (SWF) module and a knowledge-enhanced domain adversarial learning (KEDA) framework to improve accuracy and robustness. An AMK-Fast DTW algorithm aligns vibration signals across domains, and kernel density estimation minimizes distributional differences. KEDA introduces auxiliary knowledge and meta-learning to enhance transfer performance in small-sample scenarios and reduce catastrophic forgetting. SWF further strengthens the forward knowledge transfer. Experiments show that AMTLN achieves high accuracy and strong generalization across varying operational conditions, even with incompletely labeled target data.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131699"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023719","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional domain adaptation methods often perform poorly in cross-device bearing fault diagnosis when the target domain contains incomplete labels or exhibits imbalanced data. To address this issue, we propose an Adaptive meta-domain transfer learning network (AMTLN), which integrates a self-weighted fusion (SWF) module and a knowledge-enhanced domain adversarial learning (KEDA) framework to improve accuracy and robustness. An AMK-Fast DTW algorithm aligns vibration signals across domains, and kernel density estimation minimizes distributional differences. KEDA introduces auxiliary knowledge and meta-learning to enhance transfer performance in small-sample scenarios and reduce catastrophic forgetting. SWF further strengthens the forward knowledge transfer. Experiments show that AMTLN achieves high accuracy and strong generalization across varying operational conditions, even with incompletely labeled target data.
基于知识增强域对抗学习的小样本跨域轴承故障诊断方法
传统的域自适应方法在目标域标签不完整或数据不平衡的情况下,对跨设备轴承故障的诊断效果较差。为了解决这一问题,我们提出了一种自适应元域迁移学习网络(AMTLN),该网络集成了自加权融合(SWF)模块和知识增强域对抗学习(KEDA)框架,以提高准确性和鲁棒性。AMK-Fast DTW算法跨域对齐振动信号,核密度估计最小化分布差异。KEDA引入辅助知识和元学习来提高小样本情景下的迁移性能,减少灾难性遗忘。主权财富基金进一步加强了知识的正向转移。实验表明,即使在目标数据标记不完全的情况下,AMTLN在不同的操作条件下也具有较高的准确率和较强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信