Raman Monitoring of Pressure-Induced Configurational Transition of Iodine Confined within Metal–Organic Frameworks

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ning Huang, , , Shuang Liu, , , Dedi Liu*, , , Dapeng Dong, , , Benkang Liu, , , Ran Liu, , , Zhenyi Zhang, , , Jinhai Niu, , , Zhenghua Li*, , and , Bingbing Liu, 
{"title":"Raman Monitoring of Pressure-Induced Configurational Transition of Iodine Confined within Metal–Organic Frameworks","authors":"Ning Huang,&nbsp;, ,&nbsp;Shuang Liu,&nbsp;, ,&nbsp;Dedi Liu*,&nbsp;, ,&nbsp;Dapeng Dong,&nbsp;, ,&nbsp;Benkang Liu,&nbsp;, ,&nbsp;Ran Liu,&nbsp;, ,&nbsp;Zhenyi Zhang,&nbsp;, ,&nbsp;Jinhai Niu,&nbsp;, ,&nbsp;Zhenghua Li*,&nbsp;, and ,&nbsp;Bingbing Liu,&nbsp;","doi":"10.1021/acs.jpcc.5c05761","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic frameworks (MOFs) with porous architectures serve as critical hosts for iodine storage, demonstrating significant potential in diverse application fields. The confinement effects of the MOF pore geometries profoundly influence the structural dynamics and physicochemical properties of encapsulated iodine species. This study systematically examines the influence of the MOF pore geometries on the structural dynamics of confined iodine molecules. Extended polyiodide chains (I<sub>5</sub><sup>–</sup> or (I<sub>2</sub>)<sub><i>n</i></sub>) stabilize in MOF-177’s one-dimensional uniform channels, while discrete I<sub>3</sub><sup>–</sup> anions localize within MIL-101(Cr)’s cage-like mesoporous cavities. <i>In situ</i> high-pressure Raman spectroscopy reveals pressure-induced structural evolution mechanisms of iodine polymers. Hydrostatic pressure deforms the uniform one-dimensional channels of MOF-177, leading to fragmentation of the confined polyiodide chains, which reconfigure upon pressure release as the framework recovers. In contrast, MIL-101(Cr)’s reversible structural transitions under pressure induce I<sub>3</sub><sup>–</sup> anions into asymmetric configurations, even forming bulk iodine clusters. This work highlights the critical role of MOF pore structures in dictating confined iodine configurations and elucidates synergistic host–guest interactions under pressure. This study reveals the crucial role of MOF pore structure in determining confined iodine configurations and elucidates the mechanism of host–guest synergistic interactions under pressure, providing key theoretical guidance for optimizing MOF-based iodine capture materials.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 41","pages":"18578–18585"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c05761","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic frameworks (MOFs) with porous architectures serve as critical hosts for iodine storage, demonstrating significant potential in diverse application fields. The confinement effects of the MOF pore geometries profoundly influence the structural dynamics and physicochemical properties of encapsulated iodine species. This study systematically examines the influence of the MOF pore geometries on the structural dynamics of confined iodine molecules. Extended polyiodide chains (I5 or (I2)n) stabilize in MOF-177’s one-dimensional uniform channels, while discrete I3 anions localize within MIL-101(Cr)’s cage-like mesoporous cavities. In situ high-pressure Raman spectroscopy reveals pressure-induced structural evolution mechanisms of iodine polymers. Hydrostatic pressure deforms the uniform one-dimensional channels of MOF-177, leading to fragmentation of the confined polyiodide chains, which reconfigure upon pressure release as the framework recovers. In contrast, MIL-101(Cr)’s reversible structural transitions under pressure induce I3 anions into asymmetric configurations, even forming bulk iodine clusters. This work highlights the critical role of MOF pore structures in dictating confined iodine configurations and elucidates synergistic host–guest interactions under pressure. This study reveals the crucial role of MOF pore structure in determining confined iodine configurations and elucidates the mechanism of host–guest synergistic interactions under pressure, providing key theoretical guidance for optimizing MOF-based iodine capture materials.

Abstract Image

Abstract Image

金属-有机框架内碘压力诱导构型转变的拉曼监测
具有多孔结构的金属有机骨架(MOFs)是碘存储的重要载体,在不同的应用领域显示出巨大的潜力。MOF孔隙结构的约束效应深刻影响了包封碘的结构动力学和理化性质。本研究系统地考察了MOF孔隙几何形状对受限碘分子结构动力学的影响。延伸的多碘化物链(I5 -或(I2)n)稳定在MOF-177的一维均匀通道中,而离散的I3 -阴离子则定位在MIL-101(Cr)的笼状介孔腔中。原位高压拉曼光谱揭示了压力诱导的碘聚合物结构演化机制。静水压力使MOF-177均匀的一维通道发生变形,导致封闭的多碘化物链断裂,随着压力释放,随着框架恢复,多碘化物链重新配置。相反,MIL-101(Cr)在压力下的可逆结构转变诱导I3 -阴离子形成不对称构型,甚至形成大块碘簇。这项工作强调了MOF孔隙结构在决定受限碘构型中的关键作用,并阐明了压力下主客体的协同相互作用。该研究揭示了MOF孔隙结构在决定受限碘构型中的关键作用,阐明了压力下主-客体协同作用的机制,为优化MOF基碘捕获材料提供了关键的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信