Optimization of Stillinger Weber Potential Parameters for Monolayer ZnS

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hidayat Ullah Khan, F. Inam, Altaf Karim, Arshad Saleem Bhatti
{"title":"Optimization of Stillinger Weber Potential Parameters for Monolayer ZnS","authors":"Hidayat Ullah Khan,&nbsp;F. Inam,&nbsp;Altaf Karim,&nbsp;Arshad Saleem Bhatti","doi":"10.1002/jcc.70241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We optimize a Stillinger–Weber (SW) interatomic potential for ZnS monolayers to enable reliable large-scale molecular dynamics across planar, disordered, and curved morphologies. Using force matching algorithm (POTFIT) incorporating referenced density-functional-theory (SIESTA/PBE) forces gathered from diverse finite-temperature trajectories of monolayer ZnS, we refit the parameters due to by Zhou et al. (optimized for bulk phases), yielding comparable cohesive energies and lattice constants for wurtzite, zinc-blende, and 2D phases. For the monolayer, the phonon dispersion closely tracks DFT, notably correcting the optical branches. Moreover, the curvature-law fit <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mtext>strain</mtext>\n </msub>\n <mo>∝</mo>\n <mn>1</mn>\n <mo>/</mo>\n <msup>\n <mi>D</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ \\Big({E}_{\\mathrm{strain}}\\propto 1/{D}^2 $$</annotation>\n </semantics></math>) to nanotube data extrapolates to negligible strain in the flat limit (<span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>→</mo>\n <mo>∞</mo>\n </mrow>\n <annotation>$$ D\\to \\infty $$</annotation>\n </semantics></math>), reinforcing the reliability of the optimized parameters for planar geometries. The optimized SW parameters demonstrate transferability, yielding an improved bonding network in 2D disordered geometries and thermally stable single-walled ZnS tubes. Quantitatively, curved-structure tests then yield an effective bending modulus <span></span><math>\n <semantics>\n <mrow>\n <mo>≈</mo>\n <mn>35</mn>\n <mspace></mspace>\n <mi>eV</mi>\n </mrow>\n <annotation>$$ \\approx 35\\ \\mathrm{eV} $$</annotation>\n </semantics></math> and thermal shape fluctuations scaling as <span></span><math>\n <semantics>\n <mrow>\n <mtext>RMSD</mtext>\n <mo>∝</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$$ \\mathrm{RMSD}\\propto 1/D $$</annotation>\n </semantics></math>, indicating a practical stability threshold near <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>≈</mo>\n <mn>38</mn>\n <mo>−</mo>\n </mrow>\n <annotation>$$ D\\approx 38- $$</annotation>\n </semantics></math>40 Å. Collectively, our optimized SW potential is a computationally efficient model that produces better vibrational, mechanical, and curvature energetics of various flat and curved geometries without sacrificing baseline thermodynamics. The model carries limitations due to the absence of explicit long-range electrostatics (and polarization).</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 27","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70241","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We optimize a Stillinger–Weber (SW) interatomic potential for ZnS monolayers to enable reliable large-scale molecular dynamics across planar, disordered, and curved morphologies. Using force matching algorithm (POTFIT) incorporating referenced density-functional-theory (SIESTA/PBE) forces gathered from diverse finite-temperature trajectories of monolayer ZnS, we refit the parameters due to by Zhou et al. (optimized for bulk phases), yielding comparable cohesive energies and lattice constants for wurtzite, zinc-blende, and 2D phases. For the monolayer, the phonon dispersion closely tracks DFT, notably correcting the optical branches. Moreover, the curvature-law fit ( E strain 1 / D 2 $$ \Big({E}_{\mathrm{strain}}\propto 1/{D}^2 $$ ) to nanotube data extrapolates to negligible strain in the flat limit ( D $$ D\to \infty $$ ), reinforcing the reliability of the optimized parameters for planar geometries. The optimized SW parameters demonstrate transferability, yielding an improved bonding network in 2D disordered geometries and thermally stable single-walled ZnS tubes. Quantitatively, curved-structure tests then yield an effective bending modulus 35 eV $$ \approx 35\ \mathrm{eV} $$ and thermal shape fluctuations scaling as RMSD 1 / D $$ \mathrm{RMSD}\propto 1/D $$ , indicating a practical stability threshold near D 38 $$ D\approx 38- $$ 40 Å. Collectively, our optimized SW potential is a computationally efficient model that produces better vibrational, mechanical, and curvature energetics of various flat and curved geometries without sacrificing baseline thermodynamics. The model carries limitations due to the absence of explicit long-range electrostatics (and polarization).

Abstract Image

单层ZnS的Stillinger Weber电位参数优化。
我们优化了ZnS单层的Stillinger-Weber (SW)原子间势,以实现可靠的跨平面、无序和弯曲形态的大尺度分子动力学。利用力匹配算法(POTFIT)结合参考密度泛函数理论(SIESTA/PBE)从单层ZnS的不同有限温度轨迹中收集的力,我们重新调整了Zhou等人的参数(针对体相进行了优化),得到了纤锌矿、锌-闪锌矿和二维相的相似的内聚能和晶格常数。对于单层,声子色散密切跟踪DFT,特别是校正光学分支。此外,曲率律拟合(E应变∝1 / d2 $$ \Big({E}_{\mathrm{strain}}\propto 1/{D}^2 $$)与纳米管数据外推到平面极限(D→∞$$ D\to \infty $$)的应变可忽略不计,增强了优化参数对平面几何的可靠性。优化后的SW参数具有可转移性,在二维无序几何结构和热稳定的单壁ZnS管中产生了改进的键合网络。在定量上,曲线结构测试得到有效弯曲模量≈35 eV $$ \approx 35\ \mathrm{eV} $$,热形状波动缩放为RMSD∝1 / D $$ \mathrm{RMSD}\propto 1/D $$,表明在D≈38 - $$ D\approx 38- $$ 40 Å附近有一个实用的稳定阈值。总的来说,我们优化的SW潜力是一个计算效率高的模型,在不牺牲基准热力学的情况下,可以产生更好的各种平面和弯曲几何形状的振动、机械和曲率能量学。由于缺乏明确的远程静电(和极化),该模型具有局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信