Nonlinear Current Stimulation Unlocks High-Performance Zn-Mn Batteries via Reversible Phase Transformation

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Song, Haidong Zhong, Tingting Hu, Jun Du, Changyuan Tao, Qian Zhang
{"title":"Nonlinear Current Stimulation Unlocks High-Performance Zn-Mn Batteries via Reversible Phase Transformation","authors":"Yang Song, Haidong Zhong, Tingting Hu, Jun Du, Changyuan Tao, Qian Zhang","doi":"10.1039/d5sc06137g","DOIUrl":null,"url":null,"abstract":"The intrinsic complexity of reactions in Zn–Mn batteries constrain their practical deployment, necessitating precise control over dissolution and deposition processes. Here, we employ a stepwise evolution of current signals—from steady-state constant current through symmetric and asymmetric sine waves to chaotic regimes—to systematically interrogate the coupling between nonlinear electrical signals and electrode reactions. Remarkably, chaotic currents enhance the reversible transformation between Zn<small><sub>4</sub></small>SO<small><sub>4</sub></small>·(OH)<small><sub>6</sub></small>·nH<small><sub>2</sub></small>O (ZSH) and Zn<small><sub>x</sub></small>MnO(OH)<small><sub>2</sub></small> (ZMO), revealing for the first time a direct correlation between waveform nonlinearity and electrochemical modulation. This ZSH/ZMO interconversion, alongside Zn<small><sup>2+</sup></small>/H<small><sup>+</sup></small> insertion and extraction, underpins the cathodic reaction mechanism. Accumulation of inactive ZSH/ZMO phases emerges as the primary factor driving kinetic decay. Following seven cycles of chaotic activation, Zn–Mn batteries exhibit improved capacity, rate performance and cycling stability. The approach translates to flexible cells, delivering 92.23 mAh·g<small><sup>-1</sup></small> with 76.37% retention after 1550 cycles at 1 A·g<small><sup>-1</sup></small>. In situ visualization, SEM imaging, and comprehensive thermodynamic and dynamic analyses reveal that nonlinear current stimulation reconstructs fractal mass transport pathways within the electrode, thereby optimizing ion pathways and structural stability. This study bridges nonlinear circuit dynamics and Zn–Mn electrochemistry, presenting a promising strategy to high-performance aqueous Zn–Mn batteries.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"52 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc06137g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intrinsic complexity of reactions in Zn–Mn batteries constrain their practical deployment, necessitating precise control over dissolution and deposition processes. Here, we employ a stepwise evolution of current signals—from steady-state constant current through symmetric and asymmetric sine waves to chaotic regimes—to systematically interrogate the coupling between nonlinear electrical signals and electrode reactions. Remarkably, chaotic currents enhance the reversible transformation between Zn4SO4·(OH)6·nH2O (ZSH) and ZnxMnO(OH)2 (ZMO), revealing for the first time a direct correlation between waveform nonlinearity and electrochemical modulation. This ZSH/ZMO interconversion, alongside Zn2+/H+ insertion and extraction, underpins the cathodic reaction mechanism. Accumulation of inactive ZSH/ZMO phases emerges as the primary factor driving kinetic decay. Following seven cycles of chaotic activation, Zn–Mn batteries exhibit improved capacity, rate performance and cycling stability. The approach translates to flexible cells, delivering 92.23 mAh·g-1 with 76.37% retention after 1550 cycles at 1 A·g-1. In situ visualization, SEM imaging, and comprehensive thermodynamic and dynamic analyses reveal that nonlinear current stimulation reconstructs fractal mass transport pathways within the electrode, thereby optimizing ion pathways and structural stability. This study bridges nonlinear circuit dynamics and Zn–Mn electrochemistry, presenting a promising strategy to high-performance aqueous Zn–Mn batteries.
非线性电流刺激通过可逆相变解锁高性能锌锰电池
锌锰电池中固有的反应复杂性限制了它们的实际部署,需要对溶解和沉积过程进行精确控制。在这里,我们采用电流信号的逐步演变-从稳态恒流到对称和非对称正弦波到混沌状态-系统地询问非线性电信号和电极反应之间的耦合。值得注意的是,混沌电流增强了Zn4SO4·(OH)6·nH2O (ZSH)和ZnxMnO(OH)2 (ZMO)之间的可逆转换,首次揭示了波形非线性与电化学调制之间的直接关联。这种ZSH/ZMO的相互转化,以及Zn2+/H+的插入和萃取,是阴极反应机理的基础。无活性ZSH/ZMO相的积累是驱动动力学衰变的主要因素。经过7个混沌激活循环后,锌锰电池的容量、倍率性能和循环稳定性均有所提高。该方法转化为柔性电池,在1 A·g-1下进行1550次循环后,提供92.23 mAh·g-1,保留率为76.37%。原位可视化、扫描电镜成像以及综合热力学和动力学分析表明,非线性电流刺激重建了电极内部的分形质量传递路径,从而优化了路径和结构稳定性。该研究将非线性电路动力学与锌锰电化学相结合,为高性能锌锰水电池的开发提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信