{"title":"Massive fields affected by echoes: New physics vs. astrophysical environment","authors":"Roman A. Konoplya, Z. Stuchlík and A. Zhidenko","doi":"10.1088/1475-7516/2025/10/027","DOIUrl":null,"url":null,"abstract":"Unlike the perturbations of massless fields, the asymptotic tails of massive fields exhibit oscillations and decay slowly, following a power-law envelope. In this work, considering various scenarios admitting (either fundamental or effective) massive scalar and gravitational fields, we demonstrate that bump deformations in the effective potential, either in the near-horizon or far-field regions, modify these asymptotic oscillatory tails. Specifically, the power-law envelope transitions to a more complex oscillatory pattern, which cannot be easily fitted to a simple formula. This behavior is qualitatively different from the echoes of massless fields, which appear mainly during the quasinormal ringing stage and are considerably suppressed at the asymptotic tails. We show that in some models echoes may considerably amplify the signal at the stage of asymptotic tails.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"79 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/10/027","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Unlike the perturbations of massless fields, the asymptotic tails of massive fields exhibit oscillations and decay slowly, following a power-law envelope. In this work, considering various scenarios admitting (either fundamental or effective) massive scalar and gravitational fields, we demonstrate that bump deformations in the effective potential, either in the near-horizon or far-field regions, modify these asymptotic oscillatory tails. Specifically, the power-law envelope transitions to a more complex oscillatory pattern, which cannot be easily fitted to a simple formula. This behavior is qualitatively different from the echoes of massless fields, which appear mainly during the quasinormal ringing stage and are considerably suppressed at the asymptotic tails. We show that in some models echoes may considerably amplify the signal at the stage of asymptotic tails.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.