Rouzbeh Allahverdi, James B. Dent, Ngo Phuc Duc Loc and Tao Xu
{"title":"Gravitational wave signatures of primordial black hole accretion during early matter domination","authors":"Rouzbeh Allahverdi, James B. Dent, Ngo Phuc Duc Loc and Tao Xu","doi":"10.1088/1475-7516/2025/10/026","DOIUrl":null,"url":null,"abstract":"We present a scenario in which primordial black holes (PBHs) form in a post-inflationary radiation-dominated (RD) phase and then experience significant accretion during a phase of early matter dominated (EMD). We show that PBH masses could grow by up to two orders of magnitude. Restricting to the linear perturbation regime, we compute the gravitational wave (GW) spectrum that features two peaks. The high-frequency peak is associated with the PBH formation in the RD phase, while the low-frequency peak is due to the sudden transition from EMD to the later, standard RD phase. We identify a PBH mass range where one or both peaks can be observed by a combination of different GW detectors. Finally, we show the signal-to-noise ratio of the total GW spectrum for PBHs in the asteroid mass window, where they could comprise the totality of dark matter.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"19 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/10/026","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a scenario in which primordial black holes (PBHs) form in a post-inflationary radiation-dominated (RD) phase and then experience significant accretion during a phase of early matter dominated (EMD). We show that PBH masses could grow by up to two orders of magnitude. Restricting to the linear perturbation regime, we compute the gravitational wave (GW) spectrum that features two peaks. The high-frequency peak is associated with the PBH formation in the RD phase, while the low-frequency peak is due to the sudden transition from EMD to the later, standard RD phase. We identify a PBH mass range where one or both peaks can be observed by a combination of different GW detectors. Finally, we show the signal-to-noise ratio of the total GW spectrum for PBHs in the asteroid mass window, where they could comprise the totality of dark matter.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.