Prior-guided automatic delineation of post-radiotherapy gross tumor volume for esophageal cancer.

IF 3.2
Medical physics Pub Date : 2025-10-01 DOI:10.1002/mp.70005
Hongfei Sun, Ziqi An, Wei Huang, Qifeng Wang, Yufen Liu, Zihan Shi, Jie Li, Fan Meng, Jie Gong, Lina Zhao
{"title":"Prior-guided automatic delineation of post-radiotherapy gross tumor volume for esophageal cancer.","authors":"Hongfei Sun, Ziqi An, Wei Huang, Qifeng Wang, Yufen Liu, Zihan Shi, Jie Li, Fan Meng, Jie Gong, Lina Zhao","doi":"10.1002/mp.70005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Integrating post-radiotherapy (RT) CT into longitudinal esophageal cancer response models substantially improves predictive accuracy. However, manual delineation of gross tumor volume (GTV) on post-RT CT is both labor-intensive and time-consuming.</p><p><strong>Purpose: </strong>We propose a novel deep learning-based framework that integrates medical physics priors-pre-RT GTV contours and radiotherapy dose distributions-to automatically delineate post-RT GTV.</p><p><strong>Methods: </strong>A multicenter retrospective cohort of 294 EC patients (225 training, 45 internal validation, 24 external validation) was assembled. Pre-RT CT scans, GTV contours, and dose map were co-registered and cropped to 256 × 256. We implemented an nnU-Net v2 backbone, incorporating high dose region and pre-RT GTV priors via element-wise multiplication and element-wise addition to guide feature extraction. Performance was evaluated using anatomical (Dice, IoU, HD95, ASSD, Precision, Recall) and radiomics analyses (ICC, Pearson correlation, LASSO-Cox, C-index) across internal and external cohorts.</p><p><strong>Results: </strong>In cross-validation, the optimal fold achieved DSC = 0.7809 ± 0.1310, IoU = 0.6486 ± 0.1507, HD95 = 3.6321 ± 2.0942, and ASSD = 1.9673 ± 1.0352 (p < 0.0167 vs. state-of-the-art models). Ablation studies demonstrated that combining two types of medical physics priors outperformed single-prior or no-prior models (internal: DSC = 0.7723 ± 0.1290; external: DSC = 0.7545 ± 0.1058). Radiomic features extracted from automated contours exhibited high reproducibility (78.6% with ICC > 0.75) and strong concordance with manual features (R >  0.8), yielding comparable prognostic performance (C-index Δ nonsignificant).</p><p><strong>Conclusion: </strong>By embedding medical physics priors into a self-configuring nnU-Net v2, our method achieves accurate and robust automated delineation of post- RT GTV in EC across multiple centers. This approach has potential to facilitate the construction of treatment response prediction models.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":"52 10","pages":"e70005"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Integrating post-radiotherapy (RT) CT into longitudinal esophageal cancer response models substantially improves predictive accuracy. However, manual delineation of gross tumor volume (GTV) on post-RT CT is both labor-intensive and time-consuming.

Purpose: We propose a novel deep learning-based framework that integrates medical physics priors-pre-RT GTV contours and radiotherapy dose distributions-to automatically delineate post-RT GTV.

Methods: A multicenter retrospective cohort of 294 EC patients (225 training, 45 internal validation, 24 external validation) was assembled. Pre-RT CT scans, GTV contours, and dose map were co-registered and cropped to 256 × 256. We implemented an nnU-Net v2 backbone, incorporating high dose region and pre-RT GTV priors via element-wise multiplication and element-wise addition to guide feature extraction. Performance was evaluated using anatomical (Dice, IoU, HD95, ASSD, Precision, Recall) and radiomics analyses (ICC, Pearson correlation, LASSO-Cox, C-index) across internal and external cohorts.

Results: In cross-validation, the optimal fold achieved DSC = 0.7809 ± 0.1310, IoU = 0.6486 ± 0.1507, HD95 = 3.6321 ± 2.0942, and ASSD = 1.9673 ± 1.0352 (p < 0.0167 vs. state-of-the-art models). Ablation studies demonstrated that combining two types of medical physics priors outperformed single-prior or no-prior models (internal: DSC = 0.7723 ± 0.1290; external: DSC = 0.7545 ± 0.1058). Radiomic features extracted from automated contours exhibited high reproducibility (78.6% with ICC > 0.75) and strong concordance with manual features (R >  0.8), yielding comparable prognostic performance (C-index Δ nonsignificant).

Conclusion: By embedding medical physics priors into a self-configuring nnU-Net v2, our method achieves accurate and robust automated delineation of post- RT GTV in EC across multiple centers. This approach has potential to facilitate the construction of treatment response prediction models.

食管癌放疗后总肿瘤体积的预先引导自动圈定。
背景:将放疗后(RT) CT整合到纵向食管癌反应模型中,大大提高了预测的准确性。然而,在rt后CT上手动描绘总肿瘤体积(GTV)既费时又费力。目的:我们提出了一种新的基于深度学习的框架,该框架集成了医学物理先验-放疗前GTV轮廓和放疗剂量分布-来自动描述放疗后GTV。方法:对294例EC患者进行多中心回顾性队列研究,其中225例为训练组,45例为内部验证组,24例为外部验证组。预rt CT扫描、GTV等高线和剂量图共配并裁剪为256 × 256。我们实现了一个nnU-Net v2主干,通过元素智能乘法和元素智能加法结合高剂量区域和pre-RT GTV先验来指导特征提取。使用内部和外部队列的解剖学(Dice, IoU, HD95, ASSD, Precision, Recall)和放射组学分析(ICC, Pearson相关性,LASSO-Cox, C-index)评估性能。结果:在交叉验证中,最优fold达到DSC = 0.7809±0.1310,IoU = 0.6486±0.1507,HD95 = 3.6321±2.0942,ASSD = 1.9673±1.0352 (p 0.75),与手动特征高度一致(R > 0.8),预后效果相当(c指数Δ无统计学意义)。结论:通过将医学物理先验嵌入到自配置的nnU-Net v2中,我们的方法实现了跨多个中心的EC RT后GTV的准确和鲁棒的自动描述。这种方法有可能促进治疗反应预测模型的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信