{"title":"The lignan compound matairesinol monoglucoside induces type I interferon production in HBV infection immunity by regulating STING signaling.","authors":"Mengxin Lin, Zhijun Su, Dawu Zeng, Jiangfu Liu, Minghui Zheng, Ruyi Guo","doi":"10.1039/d5md00468c","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>the urgent need for effective prevention and treatment strategies for hepatitis B virus (HBV) has driven extensive research into natural compounds. This study aims to explore the therapeutic potential of matairesinol monoglucoside (MMG) in the treatment of HBV infection.</p><p><strong>Methods: </strong>primary hepatocytes and Kupffer cells were isolated from wild-type (WT) or stimulator of interferon genes (STING) knockout mice and subsequently infected with AAV-HBV to establish an <i>in vitro</i> anti-HBV assay model. The anti-HBV effects of MMG were assessed by measuring HBV DNA, HBsAg, and HBeAg levels, as well as using qRT-PCR and ELISA to evaluate type I interferon markers (IFN-α and IFN-β), and a luciferase assay. <i>In vivo</i> anti-HBV effects were determined by pre-treating mice with MMG prior to AAV-HBV infection.</p><p><strong>Results: </strong>MMG treatment significantly reduced the expression of HBV DNA, HBsAg, and HBeAg in both primary hepatocytes and Kupffer cells. Additionally, MMG enhanced the production of type I interferons (IFN-α and IFN-β) in both cell types. The knockout of STING diminished the effects of MMG on type I interferon production. Mechanistically, MMG was shown to modulate the STING-TBK1-IRF3 signaling axis, leading to increased IFN production.</p><p><strong>Conclusions: </strong>MMG shows promise as a potential therapeutic agent against HBV by targeting the STING signaling pathway.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12495308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d5md00468c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: the urgent need for effective prevention and treatment strategies for hepatitis B virus (HBV) has driven extensive research into natural compounds. This study aims to explore the therapeutic potential of matairesinol monoglucoside (MMG) in the treatment of HBV infection.
Methods: primary hepatocytes and Kupffer cells were isolated from wild-type (WT) or stimulator of interferon genes (STING) knockout mice and subsequently infected with AAV-HBV to establish an in vitro anti-HBV assay model. The anti-HBV effects of MMG were assessed by measuring HBV DNA, HBsAg, and HBeAg levels, as well as using qRT-PCR and ELISA to evaluate type I interferon markers (IFN-α and IFN-β), and a luciferase assay. In vivo anti-HBV effects were determined by pre-treating mice with MMG prior to AAV-HBV infection.
Results: MMG treatment significantly reduced the expression of HBV DNA, HBsAg, and HBeAg in both primary hepatocytes and Kupffer cells. Additionally, MMG enhanced the production of type I interferons (IFN-α and IFN-β) in both cell types. The knockout of STING diminished the effects of MMG on type I interferon production. Mechanistically, MMG was shown to modulate the STING-TBK1-IRF3 signaling axis, leading to increased IFN production.
Conclusions: MMG shows promise as a potential therapeutic agent against HBV by targeting the STING signaling pathway.