Fermi surface and pseudogap in highly doped Sr2IrO4.

IF 6.2 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
npj Quantum Materials Pub Date : 2025-01-01 Epub Date: 2025-10-03 DOI:10.1038/s41535-025-00817-9
Y Alexanian, A de la Torre, S McKeown Walker, M Straub, G Gatti, A Hunter, S Mandloi, E Cappelli, S Riccò, F Y Bruno, M Radovic, N C Plumb, M Shi, J Osiecki, C Polley, T K Kim, P Dudin, M Hoesch, R S Perry, A Tamai, F Baumberger
{"title":"Fermi surface and pseudogap in highly doped Sr<sub>2</sub>IrO<sub>4</sub>.","authors":"Y Alexanian, A de la Torre, S McKeown Walker, M Straub, G Gatti, A Hunter, S Mandloi, E Cappelli, S Riccò, F Y Bruno, M Radovic, N C Plumb, M Shi, J Osiecki, C Polley, T K Kim, P Dudin, M Hoesch, R S Perry, A Tamai, F Baumberger","doi":"10.1038/s41535-025-00817-9","DOIUrl":null,"url":null,"abstract":"<p><p>The fate of the Fermi surface in bulk electron-doped Sr<sub>2</sub>IrO<sub>4</sub> remains elusive, as does the origin and extension of its pseudogap phase. Here, we use high-resolution angle-resolved photoelectron spectroscopy (ARPES) to investigate the electronic structure of Sr<sub>2-<i>x</i></sub> La <sub><i>x</i></sub> IrO<sub>4</sub> up to <i>x</i> = 0.2, a factor of two higher than in previous work. We find that the antinodal pseudogap persists up to the highest doping level, and thus beyond the sharp increase in Hall carrier density to ≃ 1 + <i>x</i> recently observed above <i>x</i>* ≃ 0.16<sup>1</sup>. This suggests that doped iridates host a unique phase of matter in which a large Hall density coexists with an anisotropic pseudogap, breaking up the Fermi surface into disconnected arcs. The temperature boundary of the pseudogap is <i>T</i>* ≃ 200 K for <i>x</i> = 0.2, comparable to cuprates and to the energy scale of short range antiferromagnetic correlations in cuprates and iridates.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"10 1","pages":"100"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00817-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fate of the Fermi surface in bulk electron-doped Sr2IrO4 remains elusive, as does the origin and extension of its pseudogap phase. Here, we use high-resolution angle-resolved photoelectron spectroscopy (ARPES) to investigate the electronic structure of Sr2-x La x IrO4 up to x = 0.2, a factor of two higher than in previous work. We find that the antinodal pseudogap persists up to the highest doping level, and thus beyond the sharp increase in Hall carrier density to ≃ 1 + x recently observed above x* ≃ 0.161. This suggests that doped iridates host a unique phase of matter in which a large Hall density coexists with an anisotropic pseudogap, breaking up the Fermi surface into disconnected arcs. The temperature boundary of the pseudogap is T* ≃ 200 K for x = 0.2, comparable to cuprates and to the energy scale of short range antiferromagnetic correlations in cuprates and iridates.

高掺杂Sr2IrO4的费米表面和赝隙。
在块体电子掺杂的Sr2IrO4中,费米表面的命运仍然是难以捉摸的,它的赝隙相的起源和扩展也是如此。在这里,我们使用高分辨率角分辨光电子能谱(ARPES)来研究Sr2-x La x IrO4高达x = 0.2的电子结构,比以前的工作高两倍。我们发现,当霍尔载流子密度急剧增加到x*以上的1 + x时,反晶格赝隙持续存在到最高掺杂水平,从而达到≃0.161。这表明,掺杂的铱酸盐拥有一种独特的物质相,其中大霍尔密度与各向异性赝隙共存,将费米表面分解成不相连的弧。当x = 0.2时,赝隙的温度边界为T*≃200 K,与铜酸盐和铱酸盐的短程反铁磁相关的能量尺度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信