{"title":"Classicality of derived Emerton-Gee stack.","authors":"Yu Min","doi":"10.1007/s00208-025-03259-7","DOIUrl":null,"url":null,"abstract":"<p><p>We construct a derived stack <math><mi>X</mi></math> of Laurent <i>F</i>-crystals on , where <math><msub><mi>O</mi> <mi>K</mi></msub> </math> is the ring of integers of a finite extension <i>K</i> of <math><msub><mi>Q</mi> <mi>p</mi></msub> </math> . We first show that its underlying classical stack <math> <mrow><mmultiscripts><mrow></mrow> <mrow></mrow> <mtext>cl</mtext></mmultiscripts> <mi>X</mi></mrow> </math> coincides with the Emerton-Gee stack <math><msub><mi>X</mi> <mtext>EG</mtext></msub> </math> , i.e. the moduli stack of étale <math><mrow><mo>(</mo> <mi>φ</mi> <mo>,</mo> <mi>Γ</mi> <mo>)</mo></mrow> </math> -modules. Then we prove that the derived stack <math><mi>X</mi></math> is classical in the sense that when restricted to truncated animated rings, <math><mi>X</mi></math> is equivalent to the sheafification of the left Kan extension of <math><msub><mi>X</mi> <mtext>EG</mtext></msub> </math> along the inclusion from the classical commutative rings to animated rings.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"393 1","pages":"439-494"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-025-03259-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a derived stack of Laurent F-crystals on , where is the ring of integers of a finite extension K of . We first show that its underlying classical stack coincides with the Emerton-Gee stack , i.e. the moduli stack of étale -modules. Then we prove that the derived stack is classical in the sense that when restricted to truncated animated rings, is equivalent to the sheafification of the left Kan extension of along the inclusion from the classical commutative rings to animated rings.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.